39 research outputs found

    Capillary Gas Chromatographic Separation of Carboxylic Acids Using an Acidic Water Stationary Phase

    No full text
    An acidic water stationary phase is used for the analysis of carboxylic acids in capillary gas chromatography (GC). Under regular pH 7 operating conditions, these analytes are largely ionized and elute poorly, if at all, from the water phase. However, by adjusting the phase to pH 2, it is found that various acids are neutralized and can be readily eluted and separated in the system. Sulfamic acid is found to provide a stable pH for the water phase over time, whereas hydrochloric acid and other more volatile additives quickly evaporate from the column. Under optimal low pH conditions, the acidic analytes yield good peak shape and are readily observed for masses investigated down to 5 ng on-column. By comparison, on a conventional non-polar capillary GC column, the same analytes display threefold more peak tailing and are not detected for masses below 30 ng on-column. Through altering the phase pH, it is found that the selectivity between certain analytes can be potentially enhanced depending on their respective pKa values and/or ionizability. The analysis of various different samples containing carboxylic acids is demonstrated and the results indicate that this approach can possibly offer unique and beneficial selectivity in such determinations.Ye

    Dynamic Control of Gas Chromatographic Selectivity during the Analysis of Organic Bases

    No full text
    A novel method for controlling selectivity during the gas chromatographic (GC) analysis of organic bases is presented. The technique employs tandem stainless steel capillary columns, each coated with a pH adjusted water stationary phase. The first is a 0.5 m trap column coated with a pH 2.2 phase, while the second is an 11 m analytical column coated with a pH 11.4 phase. The first column traps basic analytes from injected samples, while the remaining components continue to elute and separate. Then, upon injection of a volatile aqueous ammonia solution, the basic analytes are released as desired to the analytical column where they are separated and analyzed. Separations are quite reproducible and demonstrate an average RSD of 1.2% for analyte retention times in consecutive trials. Using this approach, the retention of such analytes can be readily controlled and they can be held in the system for periods of up to 1 h without significant erosion of peak shape. As such, it can provide considerable control over analyte selectivity and resolution compared to conventional separations. Further, by employing a third conventional GC column to the series, both traditional hydrocarbon and enhanced organic base separations can be performed. The method is applied to the analysis of complex mixtures, such as gasoline, and much less matrix interference is observed as a result. The findings indicate that this approach could be a useful alternative for analyzing such samplesNatural Sciences and Engineering Research Council - Collaborative Research & Development Gran

    A Rapid Analytical Method for the Selective Quenching-Free Determination of Thiols by GC-FPD

    No full text
    A rapid method is introduced, which facilitates the selective gas chromatography – flame photometric detection (GC-FPD) analysis of thiols. The method uses lead oxide particles or plumbite solution to complex thiols into a solid lead thiolate moiety that can be physically separated from complex sample matrices and then reconstituted as the original thiol in a simple replacement solvent for analysis. While both red or yellow forms of lead oxide are found to remove thiols from sample solutions, the latter does so about 10 times faster than the former. Comparatively, though, plumbite solution is most rapid in this regard and is still 10-fold faster than solid yellow lead oxide. For example, 98± 1% (n = 3) of a 1-butanethiol standard in hexane (600 ng μL-1) was extracted after only 2 min of contact with a 0.06 M plumbite solution. The method allows thiols to be selectively isolated from co-eluting peaks and other sulfur species, which can simplify their determination. It also allows thiols to be removed from complex hydrocarbon matrices for analysis, which can greatly reduce interference from signal quenching when using a conventional FPD. For instance, analysis of a thiol standard in a commercial gasoline by this method showed that the FPD sulfur signal increased from 16 to 97% of its expected value by removing the quenching hydrocarbon interference. Accordingly, results indicate that this method could be a useful alternative approach for the selective analysis of such thiol-containing samples.Natural Sciences and Engineering Research Council - Discovery Gran

    Active Control of Selectivity in Organic Acid Analysis by Gas Chromatography

    No full text
    A new method that allows organic acid selectivity to be dynamically controlled during gas chromatography (GC) is presented. It employs dual in-series stainless steel columns, each coated with a pH-adjusted water stationary phase. The first is a 2 m column coated with a pH 11.4 phase that is connected to a second 11 m column coated with a pH 2.2 phase. In this arrangement, organic acids within sample mixtures are trapped on the first column, while the remaining non-ionizable components continue to separate and elute in the system. Later, by injecting a volatile formic acid solution, the trapped acids are released in-situ to the second column for separation and analysis as desired. The method provides good reproducibility with analyte retention times in consecutive trials yielding an average RSD of 1.9 %. Further, depending on column temperature, analytes can be readily retained for periods investigated up to about 30 minutes without significant deterioration in peak shape. This feature provides considerable control over analyte selectivity and resolution compared to conventional separations. Further, by adding a third conventional GC column in-series, both typical hydrocarbon and enhanced organic acid separations are made possible. The method is applied to the analysis of complex mixtures and matrix interference is found to be significantly minimized. Results indicate that this approach offers beneficial advantages for the selective GC analysis of such acidic analytes.Natural Sciences and Engineering Research Council (NSERC

    Chiral Separations Using a Modified Water Stationary Phase in Supercritical fluid Chromatography

    No full text
    A novel means of achieving chiral separations in supercritical fluid chromatography (SFC) using a water stationary phase is presented. By adding various chiral selectors to the phase, different chiral analytes can be readily separated using neat CO2 as a mobile phase. For example, by adding β-cyclodextrin, it is found that certain flavanone enantiomers can be separated, while using the antibiotic vancomycin as a selector provides separation of some chiral phenoxypropionic acids. Other additives such as sodium chloride and triethylamine are also explored and found to enhance certain separations when also present in the water phase. While column pressure has a moderate impact on chiral analyte retention and separation in this SFC method, column temperature has a comparatively larger influence. In particular, relatively cooler temperatures below about 5 °C are found to markedly increase resolution and selectivity. For instance, notably large resolution of 4.7 is achieved for a phenoxypropionic acid pair at 0 °C and 150 atm CO2. Since the method does not require modifier to elute such polar species, it is also readily compatible with FID detection and does not generate organic waste. Therefore, results indicate that this approach could be a potentially simple and flexible means of achieving chiral separations in SFC.Natural Sciences and Engineering Research Council - Discovery Gran
    corecore