13 research outputs found

    Gene trap mutation of murine Outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outer dense fiber protein 2, Odf2, is a major component of the outer dense fibers, ODF, in the flagellum of spermatozoa. ODF are associated with microtubule doublets that form the axoneme. We recently demonstrated that tyrosine phosphorylation of Odf2 is important for sperm motility. In the course of a study of Odf2 using Odf2 mouse knockout lines we observed that males of a high percentage chimaerism, made using XL169 embryonic stem cells, were infertile, whereas mice of low-medium percentage chimaerism were fertile.</p> <p>Results</p> <p>XL169 ES cells have a β-geo gene trap cassette inserted in the Odf2 gene. To determine possible underlying mechanisms resulting in infertility we analyzed epididymal sperm and observed that >50% displayed bent tails. We next performed ultrastructural analyses on testis of high percentage XL169 chimaeric mice. This analysis showed that high percentage XL169 chimaeric mice produce elongating spermatids that miss one or more entire outer dense fibers in their midpiece and principal piece. In addition, we observed elongating spermatids that show thinning of outer dense fibers. No other obvious abnormalities or defects are present in elongating spermatids. Spermatozoa from the caput and cauda epididymis of XL169 mice of high percentage chimaerism show additional tail defects, including absence of one or more axonemal microtubule doublets and bent tails. Sperm with bent tails display abnormal motility.</p> <p>Conclusions</p> <p>Our results document the possible impact of loss of one Odf2 allele on sperm tail structure and function, resulting in a novel sperm tail phenotype.</p

    KLC3 is involved in sperm tail midpiece formation and sperm function

    Get PDF
    AbstractKinesin light chain 3 (KLC3) is the only known kinesin light chain expressed in post-meiotic male germ cells. We have reported that in rat spermatids KLC3 associates with outer dense fibers and mitochondrial sheath. KLC3 is able to bind to mitochondria in vitro and in vivo employing the conserved tetratrico-peptide repeat kinesin light chain motif. The temporal expression and association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the spermatid cell periphery to the developing midpiece suggesting a role in midpiece formation. In fibroblasts, expression of KLC3 results in formation of large KLC3 aggregates close to the nucleus that contain mitochondria. However, the molecular basis of the aggregation of mitochondria by KLC3 and its role in sperm tail midpiece formation are not clear.Here we show that KLC3 expression from an inducible system causes mitochondrial aggregation within 6h in a microtubule dependent manner. We identified the mitochondrial outer membrane porin protein VDAC2 as a KLC3 binding partner. To analyze a role for KLC3 in spermatids we developed a transgenic mouse model in which a KLC3ΔHR mutant protein is specifically expressed in spermatids: this KLC3 mutant protein binds mitochondria and causes aggregate formation, but cannot bind outer dense fibers. Male transgenic mice display significantly reduced reproductive efficiency siring small sized litters. We observed defects in the mitochondrial sheath structure in a number of transgenic spermatids. Transgenic males have a significantly reduced sperm count and produce spermatozoa that exhibit abnormal motility parameters. Our results indicate that KLC3 plays a role during spermiogenesis in the development of the midpiece and in the normal function of spermatozoa

    Characterization of the Testis-Specific Angiotensin Converting Enzyme (tACE)-Interactome during Bovine Sperm Capacitation

    No full text
    A comprehensive understanding of molecular and biochemical changes during sperm capacitation is critical to the success of assisted reproductive technologies. We reported involvement of the testis-specific isoform of Angiotensin Converting Enzyme (tACE) in bovine sperm capacitation. The objective of this study was to characterize the tACE interactome in fresh and heparin-capacitated bovine sperm through immunoprecipitation coupled with mass spectrometry. These interactions were validated by co-localization of tACE with beta-tubulin as an identified interactome constituent. Although interactions between tACE and several proteins remained unchanged in fresh and capacitated sperm, mitochondrial aldehyde dehydrogenase 2 (ALDH2), inactive serine/threonine protein-kinase 3 (VRK3), tubulin-beta-4B chain (TUBB4B), and tubulin-alpha-8 chain (TUBA8) were recruited during capacitation, with implications for cytoskeletal and membrane reorganization, vesicle-mediated transport, GTP-binding, and redox regulation. A proposed tACE interactional network with identified interactome constituents was generated. Despite tACE function being integral to capacitation, the relevance of interactions with its binding partners during capacitation and subsequent events leading to fertilization remains to be elucidated

    Testis-Specific Isoform of Na/K-ATPase (ATP1A4) Interactome in Raft and Non-Raft Membrane Fractions from Capacitated Bovine Sperm

    No full text
    The plasma membrane of sperm contains highly dynamic lipid microdomains (rafts), which house signaling proteins with a role in regulating capacitation. We reported that ATP1A4, the testis-specific isoform of Na/K-ATPase, interacted with caveolin-1, Src, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinases 1/2 (ERK1/2) in raft and non-raft domains of the plasma membrane of bovine sperm during capacitation. The objective of the present study was to use a proteomic approach to characterize the ATP1A4 interactome in rafts and non-rafts from capacitated bovine sperm. The non-raft interactome included hexokinase 1, plakophilin 1, desmoglein 1, 14-3-3 protein &zeta;/&delta;, cathepsin D and heat shock protein beta1 proteins exclusively, whereas glutathione S-transferase and annexin A2 were unique to raft interactome. However, a disintegrin and metalloprotease 32 (ADAM 32), histone H4, actin, acrosin, serum albumin and plakoglobin were identified in both raft and non-raft fractions of capacitated sperm. Based on gene ontology studies, these differentially interacted proteins were implicated in cell&ndash;cell adhesion, signal transduction, fertilization, metabolism, proteolysis and DNA replication, in addition to acting as transport/carrier and cytoskeletal proteins. Overall, we identified proteins not previously reported to interact with ATP1A4; furthermore, we inferred that ATP1A4 may have a role in sperm capacitation

    Na+/K+ATPase as a Signaling Molecule During Bovine Sperm Capacitation1

    No full text

    Calorie Restriction Modulates Reproductive Development and Energy Balance in Pre-Pubertal Male Rats

    No full text
    The objective was to determine effects of feed restriction and refeeding on reproductive development and energy balance in pre-pubertal male rats. Sprague Dawley rats (n = 32, 24 days old, ~65 g), were randomly allocated into four treatments (n = 8/treatment): (1) Control (CON, ad libitum feed; (2) Mild Restriction (MR, rats fed 75% of CON consumption); (3) Profound Restriction (PR, 50% of CON consumption); or (4) Refeeding (RF, 50% restriction for 14 days, and then ad libitum for 7 days). Feed restriction delayed reproductive development and decreased energy balance and tissue accretion, with degree of reproductive and metabolic dysfunctions related to restriction severity. In RF rats, refeeding largely restored testis weight, sperm production (per gram and total), plasma IGF-1, leptin and insulin concentrations and energy expenditure, although body composition did not completely recover. On Day 50, more CON and RF rats than PR rats were pubertal (5/6, 4/5 and 1/6, respectively; plasma testosterone &gt;1 ng/mL) with the MR group (4/6) not different. Our hypothesis was supported: nutrient restriction of pre-pubertal rats delayed reproductive development, induced negative energy balance and decreased metabolic hormone concentrations (commensurate with restriction), whereas short-term refeeding after profound restriction largely restored reproductive end points and plasma hormone concentrations, but not body composition
    corecore