11 research outputs found

    Long-Term Gemcitabine Treatment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunotherapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death with a median survival time of 6–12 months. Most patients present with disseminated disease and the majority are offered palliative chemotherapy. With no approved treatment modalities for patients who progress on chemotherapy, we explored the effects of long-term Gemcitabine on the tumor microenvironment in order to identify potential therapeutic options for chemo-refractory PDAC. Using a combination of mouse models, primary cell line-derived xenografts, and established tumor cell lines, we first evaluated chemotherapy-induced alterations in the tumor secretome and immune surface proteins by high throughput proteomic arrays. In addition to enhancing antigen presentation and immune checkpoint expression, Gemcitabine consistently increased the synthesis of CCL/CXCL chemokines and TGFβ-associated signals. These secreted factors altered the composition of the tumor stroma, conferring Gemcitabine resistance to cancer-associated fibroblasts in vitro and further enhancing TGFβ1 biosynthesis. Combined Gemcitabine and anti-PD-1 treatment in transgenic models of murine PDAC failed to alter disease course unless mice also underwent genetic or pharmacologic ablation of TGFβ signaling. In the setting of TGFβ signaling deficiency, Gemcitabine and anti-PD-1 led to a robust CD8+ T-cell response and decrease in tumor burden, markedly enhancing overall survival. These results suggest that Gemcitabine successfully primes PDAC tumors for immune checkpoint inhibition by enhancing antigen presentation only following disruption of the immunosuppressive cytokine barrier. Given the current lack of third-line treatment options, this approach warrants consideration in the clinical management of Gemcitabine-refractory PDAC

    New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies

    Full text link
    A new series of (E)-benzo[d]imidazol-2-yl)methylene)indolin-2-one derivatives has been synthesized and evaluated for their in vitro cytotoxic activity against a panel of selected human cancer cell lines of prostate (PC-3 and DU-145) and breast (BT-549, MDA-MB-231, MCF-7, 4T1), non-small lung (A549) and gastric (HGC) cancer cells along with normal breast epithelial cells (MCF10A). Among the tested compounds, 81 showed significant cytotoxic activity against MDA-MB-231 and 4T1 cancer cells with IC50 values of 3.26 +/- 0.24 mu M and 5.96 +/- 0.67 mu M respectively. The compounds 8f, 8i, 8l and 8o were also screened on normal human breast epithelial cells (MCF10A) and found to be safer with lesser cytotoxicity. The treatment of MDA-MB-231 cells with 81 led to inhibition of cell migration ability through disruption of F-actin protein assembly. The flow-cytometry analysis reveals that the cells arrested in G0/G1 phase of the cell cycle. Further, the compound 81 induced apoptosis of MDA-MB-231 cells was characterized by different staining techniques such as Acridine Orange/Ethidium Bromide (AO/EB), DAPI, annexin V-FITC/PI, Rhodamine-123 and MitoSOX red assay. Western blot studies demonstrated that the compound 81 treatment led to activation of caspase-3, increased expression of cleaved PARP, increased expression of pro-apoptotic Bax and decreased expression of anti-apoptotic Bcl-2 in MDA-MB-231 cancer cells

    Carnosic Acid, Tangeretin, and Ginkgolide-B Anti-neoplastic Cytotoxicity in Dual Combination with Dexamethasone-[anti-EGFR] in Pulmonary Adenocarcinoma (A549)

    Full text link
    corecore