118 research outputs found
In vivo electroporation of morpholinos into the adult zebrafish retina.
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or knockdown protein expression for three to five days. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons
The implications of regional and national demographic projections for future GMS costs in Ireland through to 2026
BACKGROUND: As the health services in Ireland have become more resource-constrained, pressure has increased to reduce public spending on community drug schemes such as General Medical Services (GMS) drug prescribing and to understand current and future trends in prescribing. The GMS scheme covers approximately 37% of the Irish population in 2011 and entitles them, inter alia, to free prescription drugs and appliances. This paper projects the effects of future changes in population, coverage, claims rates and average claims cost on GMS costs in Ireland. METHODS: Data on GMS coverage, claims rates and average cost per claim are drawn from the Primary Care Reimbursement Service (PCRS) and combined with Central Statistics Office (CSO) (Regional and National Population Projections through to 2026). A Monte Carlo Model is used to simulate the effects of demographic change (by region, age, gender, coverage, claims rates and average claims cost) will have on GMS prescribing costs in 2016, 2021 and 2026 under different scenarios. RESULTS: The Population of Ireland is projected to grow by 32% between 2007 and 2026 and by 96% for the over 70s. The Eastern region is estimated to grow by 3% over the lifetime of the projections at the expense of most other regions. The Monte Carlo simulations project that females will be a bigger driver of GMS costs than males. Midlands region will be the most expensive of the eight old health board regions. Those aged 70 and over and children under 11 will be significant drivers of GMS costs with the impending demographic changes. Overall GMS medicines costs are projected to rise to €1.9bn by 2026. CONCLUSIONS: Ireland’s population will experience rapid growth over the next decade. Population growth coupled with an aging population will result in an increase in coverage rates, thus the projected increase in overall prescribing costs. Our projections and simulations map the likely evolution of GMS cost, given existing policies and demographic trends. These costs can be contained by government policy initiatives
The implications of regional and national demographic projections for future GMS costs in Ireland through to 2026
As the health services in Ireland have become more resource-constrained, pressure has increased to reduce public spending on community drug schemes such as General Medical Services (GMS) drug prescribing and to understand current and future trends in prescribing. The GMS scheme covers approximately 37% of the Irish population in 2011 and entitles them, inter alia, to free prescription drugs and appliances. This paper projects the effects of future changes in population, coverage, claims rates and average claims cost on GMS costs in Ireland
Two Different Transgenes to Study Gene Silencing and Re-Expression During Zebrafish Caudal Fin and Retinal Regeneration
We used the 500-bp Xenopusef1-α promoter and the 2-kb zebrafish histone 2A.F/Z promoter to generate several independent transgenic zebrafish lines expressing EGFP. While both promoters drive ubiquitous EGFP expression in early zebrafish development, they are systematically silenced in several adult tissues, including the retina and caudal fin. However, EGFP expression is temporarily renewed in the adult during either caudal fin or retinal regeneration. In the Tg(H2A.F/Z:EGFP)nt line, EGFP is moderately expressed in both the wound epithelium and blastema of the regenerating caudal fin. In the Tg(ef1-α:EGFP)nt line, EGFP expression is reinitiated and restricted to the blastema of the regenerating caudal fin and colabels with BrdU, PCNA, and msxc-positive cells. Thus, these two ubiquitous promoters drive EGFP transgene expression in different cell populations during caudal fin regeneration. We further analyzed the ability of the ef1-α:EGFP transgene to label nonterminally differentiated cells during adult tissue regeneration. First, we demonstrated that the transgene is highly methylated in adult zebrafish caudal fin tissue, but not during fin regeneration, implicating methylation as a potential means of transgene silencing in this line. Next, we determined that the ef1-α:EGFP transgene is also re-expressed during adult retinal regeneration. Specifically, the ef1-α:EGFP transgene colabels with PCNA in the Müglia, a specialized cell that is the source of neuronal progenitors during zebrafish retinal regeneration. Thus, we concluded that Tg(ef1-α:EGFP)nt line visually marks nonterminally differentiated cells in multiple adult regeneration environments and may prove to be a useful marker in tissue regeneration studies in zebrafish
Retinal regeneration in adult zebrafish requires regulation of TGFβ signaling
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99623/1/glia22549.pd
Characterization of retinal regeneration in adult zebrafish following multiple rounds of phototoxic lesion
Müller glia in the zebrafish retina respond to retinal damage by re-entering the cell cycle, which generates large numbers of retinal progenitors that ultimately replace the lost neurons. In this study we compared the regenerative outcomes of adult zebrafish exposed to one round of phototoxic treatment with adult zebrafish exposed to six consecutive rounds of phototoxic treatment. We observed that Müller glia continued to re-enter the cell cycle to produce clusters of retinal progenitors in zebrafish exposed to multiple rounds of phototoxic light. Some abnormalities were noted, however. First, we found that retinas exposed to multiple rounds of damage exhibited a greater loss of photoreceptors at 36 hours of light damage than retinas that were exposed to their first round of light damage. In addition, we found that Müller glia appeared to have an increase in the acute gliotic response in retinas exposed to multiple rounds of light treatment. This was evidenced by cellular hypertrophy, changes in GFAP cellular localization, and transient increases in stat3 and gfap expression. Finally, following the sixth round of phototoxic lesion, we observed a significant increase in mis-localized HuC/D-positive amacrine and ganglion cells in the inner plexiform layer and outer retina, and a decreased number of regenerated blue cone photoreceptors. These data add to recent findings that retinal regeneration in adult zebrafish occurs concomitant with Müller glia reactivity and can result in the generation of aberrant neurons. These data are also the first to demonstrate that Müller glia appear to modify their phenotype in response to multiple rounds of phototoxic lesion, exhibiting an increase in acute gliosis while maintaining a remarkable capacity for long-term regeneration of photoreceptors
Using the Tg(nrd:egfp)/albino Zebrafish Line to Characterize In Vivo Expression of neurod
In this study, we used a newly-created transgenic zebrafish, Tg(nrd:egfp)/albino, to further characterize the expression of neurod in the developing and adult retina and to determine neurod expression during adult photoreceptor regeneration. We also provide observations regarding the expression of neurod in a variety of other tissues. In this line, EGFP is found in cells of the developing and adult retina, pineal gland, cerebellum, olfactory bulbs, midbrain, hindbrain, neural tube, lateral line, inner ear, pancreas, gut, and fin. Using immunohistochemistry and in situ hybridization, we compare the expression of the nrd:egfp transgene to that of endogenous neurod and to known retinal cell types. Consistent with previous data based on in situ hybridizations, we show that during retinal development, the nrd:egfp transgene is not expressed in proliferating retinal neuroepithelium, and is expressed in a subset of retinal neurons. In contrast to previous studies, nrd:egfp is gradually re-expressed in all rod photoreceptors. During photoreceptor regeneration in adult zebrafish, in situ hybridization reveals that neurod is not expressed in Müller glial-derived neuronal progenitors, but is expressed in photoreceptor progenitors as they migrate to the outer nuclear layer and differentiate into new rod photoreceptors. During photoreceptor regeneration, expression of the nrd:egfp matches that of neurod. We conclude that Tg(nrd:egfp)/albino is a good representation of endogenous neurod expression, is a useful tool to visualize neurod expression in a variety of tissues and will aid investigating the fundamental processes that govern photoreceptor regeneration in adults
- …