6 research outputs found

    Short-term desalination of Pulicat lagoon (Southeast India) due to the 2015 extreme flood event: insights from Land-Ocean Interactions in Coastal Zone (LOICZ) models

    No full text
    Abstract Introduction We investigated the magnitude and duration of desalination of Pulicat—a coastal lagoon ecosystem connected to the Bay of Bengal on the South-eastern coast of India—during the 2015 South India flood event which was a period of high-magnitude precipitation and riverine flooding. Methods We estimated freshwater runoff into the lagoon using flow accumulation models for a period of 55 days (November 1 to December 25, 2015) using daily gridded precipitation data from the Global Precipitation Measurement and a digital elevation model. Using the estimates of freshwater runoff, direct precipitation and observed salinities, we simulated water and salinity fluxes of the lagoon using the Land-Ocean Interactions in the Coastal Zone model. Further, we also used Monte Carlo simulation to estimate the uncertainty in system salinity, the residual salinity at the boundary and the freshwater residence times in the lagoon. Results We estimated that a high volume (~ 760 × 106 m3) of relatively low salinity waters (residual salinity = 23.47 psu) had been exported from the lagoon to the Bay of Bengal during the period which is likely to have caused a strong dip in the daily salinity profile of the coastal sea. We contend that the lagoon experienced ~ 40% desalination due to the 2015 event with a freshwater residence time of 18.5 days. Conclusions The study highlighted the short-term, high-magnitude desalination undergone by Pulicat lagoon during the 2015 South India floods. Considering the high residual and exchange volumes obtained from the study, we conclude that Pulicat could be a major exporter of relatively low salinity waters to the Bay of Bengal during monsoons

    Site responses based on ambient vibrations and earthquake data: a case study from the meizoseismal area of the 2001 Bhuj earthquake

    No full text
    The 2001 Mw 7.6 earthquake sourced in the Kachchh rift of northwest India led to extensive damage in the city of Bhuj, located similar to 70 km southwest of its epicenter. The building stock of this densely populated city was a mix of modern, single, and multistoried structures as well as traditional and non-engineered abodes, most of which were not designed to withstand severe shaking effects. Although there was extensive liquefaction and ground failure in the meizoseismal area, they were not observed in Bhuj, but the damage was severe here. In this study, we apply horizontal to vertical spectral ratio method to ambient vibrations (HVSR-AV) to obtain fundamental resonance frequency (f0) and H/V peak amplitude (A0) to examine if site response had any significant role in the observed damage. The patterns of H/V curves as well as spatial distributions of f0 (0.6-1.4 Hz) and A0 (1.5-4.4) suggest absence of any strong impedance contrast within the subsurface. Similar results obtained for ambient vibrations and earthquake signals suggest the efficacy of the HVSR-AV method as most useful for regions of low-level seismicity. The weathered sandstone that is generally exposed in the city represents the resonating layer whose thickness is approximately estimated as similar to 66-155 m, based on 1D assumption. The current set of available data precludes any quantitative modeling, but our preliminary inference is that site effects were not significant during the 2001 earthquake damage observed in Bhuj

    Estimates of site response based on spectral ratio between horizontal and vertical components of ambient vibrations in the source zone of 2001 Bhuj earthquake

    No full text
    We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our HIV curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f(0)) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low HIV peak amplitudes (A(0) = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the HIV method to study complex geological settings as Kachchh. (C) 2014 Elsevier Ltd. All rights reserved
    corecore