54 research outputs found

    Improving performance of far users in cognitive radio: Exploiting NOMA and wireless power transfer

    Get PDF
    In this paper, we examine non-orthogonal multiple access (NOMA) and relay selection strategy to benefit extra advantage from traditional cognitive radio (CR) relaying systems. The most important requirement to prolong lifetime of such network is employing energy harvesting in the relay to address network with limited power constraint. In particular, we study such energy harvesting CR-NOMA using amplify-and-forward (AF) scheme to improve performance far NOMA users. To further address such problem, two schemes are investigated in term of number of selected relays. To further examine system performance, the outage performance needs to be studied for such wireless powered CR-NOMA network over Rayleigh channels. The accurate expressions for the outage probability are derived to perform outage comparison of primary network and secondary network. The analytical results show clearly that position of these nodes, transmit signal to noise ratio (SNR) and power allocation coefficients result in varying outage performance. As main observation, performance gap between primary and secondary destination is decided by both power allocation factors and selection mode of single relay or multiple relays. Numerical studies were conducted to verify our derivations.Web of Science1211art. no. 220

    Tractable computation in outage performance analysis of relay selection NOMA

    Get PDF
    In recent years, using full-duplex (FD) transmission model provides enhanced bandwidth efficiency and improved performance for non-orthogonal multiple access (NOMA) system. However, lack of papers have investigated FD relay together with relay selection issue to improve performance of NOMA system. The problems in power allocation for two NOMA users satisfying fairness as well as relay selection strategy are studied in this paper. By considering the outage performance of proposed scheme with its vital result, general NOMA wireless networks can be developed for future networks due to its improved performance. Simulation results show that the relaying selection scheme can achieve a significant performance improvement by increasing required quantity of relay

    Optimization for continuous overflow proteolytic hydrolysis of spent brewer’s yeast by using proteases

    Get PDF
    A large amount of spent yeast as by-product is annually generated from brewing industry and it contains about 50-55% protein with good balance of amino acids. The hydrolysate produced from spent brewer’s yeast may be used in food application. The yield of proteolylic hydrolysis for spent brewer’s yeast and amino acid contents of hydrolysates depend on factors such as temperature, pH value, type of used enzyme and ratio enzyme/substrate, time. Besides, applied hydrolysing methods (batch-, or continuous method) has effected on degree of hydrolysis. With the purpose of how proteolytic hydrolysis having effects on the spent brewer’s yeast for food application in industrial scale, continuous overflow method was used in this study. Bitterness of hydrolysate and the yield of continuous overflow proteolytic hydrolysis process are the two interested factors for protein hydrolysis. In this report, it is dealt with determination for optimal conditions to obtain the highest yield of hydrolysis process and the lowest bitterness of hydrolysate. Response surface methodology (RSM) was used to determine optimal condition for continuous overflow proteolytic hydrolysis of spent brewer’s yeast. The optimal conditions for obtaining high degree of hydrolysis and low bitterness are determined as followings: ratio of enzyme mixture (alcalase 7.5 U/g and flavourzyme 10 U/g), pH at 7.5, hydrolysis temperature at 51oC and hydrolysis time of 9 hours. Under the optimal conditions, the yield of hydrolysis was 59.62% ± 0.027 and the bitterness equivalently with concentration of quinine was 7.86 ± 0.033 μmol /ml

    NOMA-assisted multiple access scheme for IoT deployment: Relay selection model and secrecy performance improvement

    Get PDF
    In this paper, an Internet-of-Things (IoT) system containing a relay selection is studied as employing an emerging multiple access scheme, namely non-orthogonal multiple access (NOMA). This paper proposes a new scheme to consider secure performance, to be called relay selection NOMA (RS-NOMA). In particular, we consider metrics to evaluate secure performance in such an RS-NOMA system where a base station (master node in IoT) sends confidential messages to two main sensors (so-called NOMA users) under the influence of an external eavesdropper. In the proposed IoT scheme, both two NOMA sensors and an illegal sensor are served with different levels of allocated power at the base station. It is noticed that such RS-NOMA operates in two hop transmission of the relaying system. We formulate the closed-form expressions of secure outage probability (SOP) and the strictly positive secure capacity (SPSC) to examine the secrecy performance under controlling setting parameters such as transmit signal-to-noise ratio (SNR), the number of selected relays, channel gains, and threshold rates. The different performance is illustrated as performing comparisons between NOMA and orthogonal multiple access (OMA). Finally, the advantage of NOMA in secure performance over orthogonal multiple access (OMA) is confirmed both analytically and numerically.Web of Science193art. no. 73

    Two Spot Coupled Ring Resonators

    Get PDF
    Abstract. We consider a model of two coupled ring waveguides with constant linear gain and nonlinear absorption with space-dependent coupling. This system can be implemented in various physical situations as optical waveguides, atomic Bose-Einstein condensates, polarization condensates, etc. It is described by two coupled nonlinear Schrödinger equation. For numerical simulations, we take local two-gaussian coupling.It is found in our previous papers that, depending on the values of involved parameters, we can obtain several interesting nonlinear phenomena, which include spontaneous symmetry breaking, modulational instability leading to generation of stable circular flows with various vorticities, stable inhomogeneous states with interesting structure of currents flowing between rings, as well as dynamical regimes having signatures of chaotic behavior. This research will be associated with experimental investigation planned in Freie Universität Berlin, in the group of prof. Michael Giersig

    Exploiting Secrecy Performance of Uplink NOMA in Cellular Networks

    Get PDF
    Funding Information: This work was supported in part by the Air Force Office of Scientific Research under Award FA9550-20-1-0090, and in part by the National Science Foundation under Grant CNS-2034218.Peer reviewedPublisher PD

    A Novel Self-organizing Fuzzy Cerebellar Model Articulation Controller Based Overlapping Gaussian Membership Function for Controlling Robotic System

    Get PDF
    This paper introduces an effective intelligent controller for robotic systems with uncertainties. The proposed method is a novel self-organizing fuzzy cerebellar model articulation controller (NSOFC) which is a combination of a cerebellar model articulation controller (CMAC) and sliding mode control (SMC). We also present a new Gaussian membership function (GMF) that is designed by the combination of the prior and current GMF for each layer of CMAC. In addition, the relevant data of the prior GMF is used to check tracking errors more accurately. The inputs of the proposed controller can be mixed simultaneously between the prior and current states according to the corresponding errors. Moreover, the controller uses a self-organizing approach which can increase or decrease the number of layers, therefore the structures of NSOFC can be adjusted automatically. The proposed method consists of a NSOFC controller and a compensation controller. The NSOFC controller is used to estimate the ideal controller, and the compensation controller is used to eliminate the approximated error. The online parameters tuning law of NSOFC is designed based on Lyapunov’s theory to ensure stability of the system. Finally, the experimental results of a 2 DOF robot arm are used to demonstrate the efficiency of the proposed controller

    Spontaneous Symmetry Breaking of Solitons Trapped in a Double-Gauss Potentials

    Get PDF
    We consider an extended model of the model considered before with double-square potential, namely one-dimensional (1D) nonlinear Schrödinger equation (NLSE) with self-focusing nonlinearity and a 1D double-gauss potential. Spontaneous symmetry breaking has been presented in terms of the control parameter which is propagation constant in the case of optics and chemical potential in the of Bose-Einstein Condensate (BEC), correspondingly. The numerical simulations predict a bifurcation breaking the symmetry of 1D trapped in the double-gauss potential of the supercritical type as in the case of double-square potential. Furthermore we have constructed bifurcation diagrams considering the stability of solitons with three methods: the method using Vakhitov–Kolokolov (V-K) Stability Criterion, Pseudospectral Method and Method for Linear-Stability Eigenvalues. It will be shown that for our model the results obtained are the same for these three methods but the third one is the fastest
    corecore