11 research outputs found

    Exposure of agriculture workers to pesticides: the effect of heat on protective glove performance and skin exposure to dichlorvos

    Get PDF
    Dichlorvos is a toxic organophosphate insecticide that is used in agriculture and other insecticide applications. Dermal uptake is a known exposure route for dichlorvos and chemical protective gloves are commonly utilized. Chemical handling and application may occur in a variety of thermal environments, and the rates of both chemical permeation through gloves and transdermal penetration may vary significantly with temperature. There has been no published research on the temperature-dependent kinetics of these processes for dichlorvos and thus, this study reports on the effects of hot conditions for the concentrated and application strength chemical. Dichlorvos breakthrough times for non-disposable polyvinyl chloride (PVC) gloves at 60 °C were approximately halved compared to 25 °C for the concentrate (2 vs. 4 h) and more than halved at application strength (3 vs. >8 h). From permeation experiments covering 15–60 °C, there was a 460-fold increase in cumulative permeation over 8 h for the concentrated dichlorvos and the estimated activation energy halved. Elevated temperature was also shown to be a significant factor for human skin penetration increasing the cumulative penetration of concentrate dichlorvos from 179 ± 37 to 1315 ± 362 µg/cm² (p = 0.0032) and application strength from 29.8 ± 5.7 to 115 ± 19 µg/cm² (p = 0.0131). This work illustrates the important role temperature plays in glove performance and health risk via dermal exposure. As such, it is important to consider in-use conditions of temperature when implementing chemical hygiene programs.Leigh Thredgold, Sharyn Gaskin , Chloe Quy and Dino Pisaniell

    Understanding skin absorption of common aldehyde vapours from exposure during hazardous material incidents

    Get PDF
    Published online: 15 February 2019The toxic release of aldehyde vapours during a hazardous material (HAZMAT) incident primarily results in respiratory concerns for the unprotected public. However, skin absorption may be an important concurrent exposure route that is poorly understood for this scenario. This study provides experimental data on the skin absorption properties of common aldehydes used in industry, including acetaldehyde, acrolein, benzaldehyde and formaldehyde, in gaseous or vapour form using an adapted in vitro technique. Two of the four tested aldehydes were found to penetrate the skin in appreciable amounts following 30-min exposure at HAZMAT relevant atmospheric concentrations: acetaldehyde (5.29 ± 3.24 μg/cm²) and formaldehyde (3.45 ± 2.58 μg/cm²). Whereas only low levels of acrolein (0.480 ± 0.417 μg/cm²) and benzaldehyde (1.46 ± 0.393 μg/cm²) skin penetration was noted. The aldehydes demonstrated differing levels of interaction with fabric. Formaldehyde and acetaldehyde adsorbed strongly to denim, whereas benzaldehyde and acrolein displayed no sink properties. However, denim was shown to be an initial protective barrier and reduced penetration outcomes for all aldehydes. This study provides important information to assist first responders and confirms the relevance of using physicochemical properties (e.g. solubility, molecular weight, partition coefficient) to predict skin permeation potential in the absence of empirical data during HAZMAT incidents involving different types of aldehydes.Leigh Thredgold, Sharyn Gaskin, Linda Heath, Dino Pisaniello, Michael Logan, Christina Baxte

    Characterisation of dust emissions from machined engineered stones to understand the hazard for accelerated silicosis

    Get PDF
    Engineered stones are novel construction materials associated with a recent upsurge in silicosis cases among workers in the stonemason industry. In order to understand the hazard for the short latency of lung disease among stonemasons, we simulated real-time dust exposure scenario by dry-machining engineered stones in controlled conditions, capturing and analysing the respirable dust generated for physical and chemical characteristics. Natural granite and marble were included for comparison. Cutting engineered stones generated high concentrations of very fine particles ( 80% respirable crystalline silica content, in the form of quartz and cristobalite. Engineered stones also contained 8–20% resin and 1–8% by weight metal elements. In comparison, natural stones had far lower respirable crystalline silica (4- 30%) and much higher metal content, 29–37%. Natural stone dust emissions also had a smaller surface area than engineered stone, as well as lower surface charge. This study highlighted the physical and chemical variability within engineered stone types as well as between engineered and natural stones. This information will ultimately help understand the unique hazard posed by engineered stone fabrication work and help guide the development of specific engineering control measures targeting lower exposure to respirable crystalline silica.Chandnee Ramkissoon, Sharyn Gaskin, Leigh Thredgold, Tony Hall, Shelley Rowett, Richard Gu

    Reducing everyday consumption: Mapping the landscape of grassroots social movements and activist households in Australia

    No full text
    Increasing numbers of relatively affluent people are endeavoring to reduce everyday consumption and waste in response to environmental and social concerns. This paper explores five activist lifestyles and grassroots social movements that aim to reduce everyday consumption to uncover who, why, what and how households reduce consumption. Our understanding of everyday consumption captures the design of the house, the physical dwelling and the experience of day-to-day living. We seek to understand the lifestyle and identity characteristics, motivations, barriers, meanings and cultural beliefs that influence social norms towards less consumption. Our review reveals that most people begin from raised consciousness and concern about production and consumption practices. Evidence is building that shows, for many people, living a less consumptive, more collaborative, simple, frugal, downshifted life is beneficial to human health and well-being and highlights part of the success of these movements and lifestyles. Activist lifestyles should be promoted to a relatively affluent public as creative, meaningful, and satisfying and not as sacrifices to be made. This central finding offers a potentially useful behavioral lever to complement structural level sustainable urban transitions.Charmaine J. Thredgold, Lyrian Daniel, Emma Bake

    Empirical data in support of a skin notation for methyl chloride

    No full text
    This article presents the first empirical experimental data on the skin absorption of methyl chloride gas using an in vitro technique and human skin. Methyl chloride is a commonly used industrial agent that is known to be an inhalational hazard but is also reported to be absorbed through human skin in amounts that contribute substantially to systemic intoxication. As a result, is has been assigned a skin notation by the ACGIH. Other than predictive models, there is a general paucity of experimental data on the skin absorption of methyl chloride and therefore a distinct lack of empirical evidence in the open literature to support the assignment of a skin notation for this chemical. This study found that methyl chloride permeates through human epidermis when exposed at high atmospheric concentrations within relatively short timeframes. Therefore, providing important initial empirical evidence in support of the assignment of a skin notation.Sharyn Gaskin, Leigh Thredgold, Linda Heath, Dino Pisaniello, Michael Logan and Christina Baxte

    DNA capture-probe based separation of double-stranded polymerase chain reaction amplification products in poly(dimethylsiloxane) microfluidic channels

    No full text
    Herein, we describe the development of a novel primer system that allows for the capture of double-stranded polymerase chain reaction (PCR) amplification products onto a microfluidic channel without any preliminary purification stages. We show that specially designed PCR primers consisting of the main primer sequence and an additional "tag sequence" linked through a poly(ethylene glycol) molecule can be used to generate ds-PCR amplification products tailed with ss-oligonucleotides of two forensically relevant genes (amelogenin and human c-fms (macrophage colony-stimulating factor) proto-oncogene for the CSF-1 receptor (CSF1PO). Furthermore, with a view to enriching and eluting the ds-PCR products of amplification on a capillary electrophoretic-based microfluidic device we describe the capture of the target ds-PCR products onto poly(dimethylsiloxane) microchannels modified with ss-oligonucleotide capture probes.Dmitriy Khodakov, Leigh Thredgold, Claire E. Lenehan, Gunther G. Andersson, Hilton Kobus and Amanda V. Elli

    A geophysical analysis of Aboriginal earth mounds in the Murray River Valley, South Australia

    No full text
    Earth mounds are common archaeological features in some regions of Australia, particularly within the Murray‐Darling Basin. These features are generally considered to have formed via the repeated use of earth oven cookery methods employed by Aboriginal people during the mid‐ to late‐Holocene. This study assesses the relative effectiveness of key geophysical methods including magnetometry, ground‐penetrating radar (GPR) and electrical resistivity tomography (ERT) in mapping, and determining the stratigraphy of earth mound sites. Three earth mounds adjacent to Hunchee Creek, on Calperum Station in South Australia's Riverland region, were chosen to conduct a comparative trial of these methods. This research demonstrated that geophysics can be used to both locate mounds and provide information as to deposit thickness and size. Individual ovens within mounds can also be located. This suggests a greater potential role for geophysics in understanding the Holocene archaeological record in Australia

    Smart environment effectiveness analysis of a pursuit and evasion scenario.

    No full text
    [[abstract]]The internet of things (IoT) has become a trend in interactive environments for providing information to decision-makers. Anti-submarine warfare (ASW) is a typical pursuit and evasion (PE) game that is a very complicated process. The ASW helicopter is assigned to execute the final phase of hunting the submarine with a torpedo attack. In most cases, a single helicopter is assigned to detect the submarine by dipping sonar, and then drops a torpedo. Once the dipping sonar goes off, uncertainty takes over, with the possible result of losing track of the submarine. To prevent this problem, using the IoT concept to create a wireless sensor network (WSN) in the area of interest for keeping ears on the evading submarine is a potential solution. The objective of this paper is to gain insights into this PE scenario so as to quantify the interaction result in order to demonstrate the effectiveness of the helicopter in terms of hunting the submarine. Monte Carlo simulation has been developed as the analytical tool, and ANOVA was used to verify the significance of the output measure of effectiveness (MOE) before analysis. The results show that a slow, unalerted submarine has a very low chance of survival. An alerted submarine has very high chance of survival, but when the proposed sonobuoy WSN is in place, this situation benefitting the submarine will be reversed. The WSN has been proved to be effective in a single helicopter carrying out its ASW task.[[notice]]補正完
    corecore