121 research outputs found

    Racemases and epimerases operating through a 1,1-proton transfer mechanism:Reactivity, mechanism and inhibition

    Get PDF
    Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics

    The perils of rational design – unexpected irreversible elimination of fluoride from 3-fluoro-2-methylacyl-CoA esters catalysed by α-methylacyl-CoA racemase (AMACR; P504S)

    Get PDF
    α-Methylacyl-CoA racemase (AMACR; P504S) catalyses ‘racemization’ of 2-methylacyl-CoAs, the activation of R-ibuprofen and is a promising cancer drug target. Human recombinant AMACR 1A catalyses elimination of 3-fluoro-2-methyldecanoyl-CoAs to give E-2-methyldec-2-enoyl-CoA and fluoride anion, a previously unknown reaction. ‘Racemization’ of 2-methyldec-3-enoyl-CoAs was also catalysed, without double bond migration

    A neoclerodane orthoester and other new neoclerodane diterpenoids from Teucrium yemense chemistry and effect on secretion of insulin

    Get PDF
    Teucrium yemense, a medicinal plant commonly grown in Saudi Arabia and Yemen, is traditionally used to treat infections, kidney diseases, rheumatism, and diabetes. Extraction of the dried aerial parts of the plant with methanol, followed by further extraction with butanol and chromatography, gave twenty novel neoclerodanes. Their structures, relative confgurations and some conformations were determined by MS and 1-D and 2-D NMR techniques. Most were fairly conventional but one contained an unusual stable orthoester, one had its (C-16)–(C-13)–(C-14)–(C-15) (tetrahydro)furan unit present as a succinic anhydride and one had a rearranged carbon skeleton resulting from ring-contraction to give a central octahydroindene bicyclic core, rather than the usual decalin. Mechanisms are proposed for the biosynthetic formation of the orthoester and for the ring-contraction. Four novel neoclerodanes increased the glucose-triggered release of insulin from isolated murine pancreatic islets by more than the standard drug tolbutamide, showing that they are potential leads for the development of new anti-diabetic drugs
    • …
    corecore