80 research outputs found

    Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys

    Get PDF
    In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables

    Carotid Baroreflex Activation: Past, Present, and Future

    Get PDF
    Electrical activation of the carotid baroreceptor system is an attractive therapy for the treatment of resistant hypertension. In the past, several attempts were made to directly activate the baroreceptor system in humans, but the method had to be restricted to a few selected patients. Adverse effects, the need for better electrical devices and better surgical techniques, and the lack of knowledge about long-term effects has greatly hampered developments in this area for many years. Recently, a new and promising device was evaluated in a multicenter feasibility trial, which showed a clinically and statistically significant reduction in office systolic blood pressure (>20 mm Hg). This reduction could be sustained for at least 2 years with an acceptable safety profile. In the future, this new device may stimulate further application of electrical activation of the carotid baroreflex in treatment-resistant hypertension
    corecore