45 research outputs found

    Multiscale Toxicology - Building the Next Generation Tools for Toxicology

    Get PDF
    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterials or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner

    Increased proteome coverage for quantitative peptide abundance measurements based upon high performance separations and DREAMS FTICR mass spectrometry

    Get PDF
    AbstractA primary challenge in proteome measurements is to be able to detect, identify, and quantify the extremely complex mixtures of proteins. The relative abundances of interest span at least six orders of magnitude for mammalian proteomes, and this constitutes an intractable challenge for high throughput proteome studies. We have recently described a new approach, Dynamic Range Enhancement Applied to Mass Spectrometry (DREAMS), which is based upon the selective ejection of the most abundant species to expand the dynamic range of Fourier transform ion cyclotron resonanace (FTICR) measurements. The basis of our approach is on-the-fly data-dependent selective ejection of highly abundant species, followed by prolonged accumulation of remaining low-abundance species in a quadrupole external to the FTICR ion trap. Here we report the initial implementation of this approach with high efficiency capillary reverse phase LC separations and high magnetic field electrospray ionization FTICR mass spectrometry for obtaining enhanced coverage in quantitative measurements for mammalian proteomes. We describe the analysis of a sample derived from a tryptic digest of proteins from mouse B16 cells cultured in both natural isotopic abundance and 15N-labeled media. The FTICR mass spectrometric analysis allows the assignment of peptide pairs (corresponding to the two distinctive versions of each peptide), and thus provides the basis for quantiative measurements when one of the two proteomes in the mixture is perturbed or altered in some fashion. We show that implementation of the DREAMS approach allows assignment of approximately 80% more peptide pairs, thus providing quantitative information for approximately 18,000 peptide pairs in a single analysis

    Network Analysis of Epidermal Growth Factor Signaling Using Integrated Genomic, Proteomic and Phosphorylation Data

    Get PDF
    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response

    Controlling the Response: Predictive Modeling of a Highly Central, Pathogen-Targeted Core Response Module in Macrophage Activation

    Get PDF
    We have investigated macrophage activation using computational analyses of a compendium of transcriptomic data covering responses to agonists of the TLR pathway, Salmonella infection, and manufactured amorphous silica nanoparticle exposure. We inferred regulatory relationship networks using this compendium and discovered that genes with high betweenness centrality, so-called bottlenecks, code for proteins targeted by pathogens. Furthermore, combining a novel set of bioinformatics tools, topological analysis with analysis of differentially expressed genes under the different stimuli, we identified a conserved core response module that is differentially expressed in response to all studied conditions. This module occupies a highly central position in the inferred network and is also enriched in genes preferentially targeted by pathogens. The module includes cytokines, interferon induced genes such as Ifit1 and 2, effectors of inflammation, Cox1 and Oas1 and Oasl2, and transcription factors including AP1, Egr1 and 2 and Mafb. Predictive modeling using a reverse-engineering approach reveals dynamic differences between the responses to each stimulus and predicts the regulatory influences directing this module. We speculate that this module may be an early checkpoint for progression to apoptosis and/or inflammation during macrophage activation

    Effect of L-Dopa Methylester and Glutathione Depletion on Murine B16BL6 Melanoma Growth In Vitro

    Get PDF
    The cytotoxic and growth-inhibitory effect of levodopa methylester (LDME) in murine B16BL6 (BL6) melanoma cells after glutathione (GSH) in murine B16BL6 (BL6) melanoma cells after glutathione (GSH) depletion was stuided in vitro. PRetreatement of BL6 cell with 50 μM buthionine sulfoximine (BSO) depleted GSH content by nearly 90% and enhanced the growth-inhibitory effect of even a minimally cytotoxic concentration of LDME. Radiaothymidine incorporation into BL6 cells significantly increased compared to untreated controls during the first 4h of exposure to 0.2mM LDME. However, pretreatment with BSO prevented this LDME-induced increase in radiothymidien incorporation. Because the percentage of cells in S-phase of the cell cycle was not altered, these results suggest that BSO exposure may be inhibiting unscheduled DNA synthesis, which could contribute to the cytotoxic effects of LDME . In addition, spectrophotometric studies indicated that n a cell-free system, GSH scavenged dopaquinone produced by the tyrosinasemediated oxidation of LDME, presumably formation of glutathionyldopa. Thus enhancememt of LDME cytotoxicity by BSO may also involve depleting the amount of GSH available for the nucleophilic addition to the quinone

    Probing Conformational Changes of Gramicidin Ion Channels by Single-Molecule Patch-Clamp Fluorescence Microscopy

    Get PDF
    Complex conformational changes influence and regulate the dynamics of ion channels. Such conformational changes are stochastic and often inhomogeneous, which makes it extremely difficult, if not impossible, to characterize them by ensemble-averaged experiments or by single-channel recordings of the electric current that report the open-closed events but do not specifically probe the associated conformational changes. Here, we report our studies on ion channel conformational changes using a new approach, patch-clamp fluorescence microscopy, which simultaneously combines single-molecule fluorescence spectroscopy and single-channel current recordings to probe the open-closed transitions and the conformational dynamics of individual ion channels. We demonstrate patch-clamp fluorescence microscopy by measuring gramicidin ion channel conformational changes in a lipid bilayer formed at a patch-clamp micropipette tip under a buffer solution. By measuring single-pair fluorescence resonance energy transfer and fluorescence self-quenching from dye-labeled gramicidin channels, we observed that the efficiency of single-pair fluorescence resonance energy transfer and self-quenching is widely distributed, which reflects a broad distribution of conformations. Our results strongly suggest a hitherto undetectable correlation between the multiple conformational states of the gramicidin channel and its closed and open states in a lipid bilayer
    corecore