41 research outputs found
Socially sensitive lactation: Exploring the social context of breastfeeding
Many women report difficulties with breastfeeding and do not maintain the practice for as long as intended. Although psychologists and other researchers have explored some of the difficulties they experience, fuller exploration of the relational contexts in which breastfeeding takes place is warranted to enable more in-depth analysis of the challenges these pose for breastfeeding women. The present paper is based on qualitative data collected from 22 first-time breastfeeding mothers through two phases of interviews and audio-diaries which explored how the participants experienced their relationships with significant others and the wider social context of breastfeeding in the first five weeks postpartum. Using a thematic analysis informed by symbolic interactionism, we develop the overarching theme of âPractising socially sensitive lactationâ which captures how participants felt the need to manage tensions between breastfeeding and their perceptions of the needs, expectations and comfort of others. We argue that breastfeeding remains a problematic social act, despite its agreed importance for child health. Whilst acknowledging the limitations of our sample and analytic approach, we suggest ways in which perinatal and public health interventions can take more effective account of the social challenges of breastfeeding in order to facilitate the health and psychological well-being of mothers and their infants
The Spread of Fecally Transmitted Parasites in Socially-Structured Populations
Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, diseaseârelated mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a âcoreâ area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms
Guidelines for DNA recombination and repair studies: mechanistic assays of DNA repair processes
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies
Guidelines for DNA recombination and repair studies: mechanistic assays of DNA repair processes
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies