172 research outputs found
Aeolian features on Venus: Preliminary Magellan results
Magellan synthetic aperture radar data reveal numerous surface features that are attributed to aeolian, or wind processes. Wind streaks are the most common aeolian feature. They consist of radar backscatter patterns that are high, low, or mixed in relation to the surface on which they occur. A data base of more than 3400 wind streaks shows that low backscatter linear forms (long, narrow streaks) are the most common and that most streaks occur between 17°S to 30°S and 5°N to 53°N on smooth plains. Moreover, most streaks are associated with deposits from certain impact craters and some tectonically deformed terrains. We infer that both of these geological settings provide fine particulate material that can be entrained by the low-velocity winds on Venus. Turbulence and wind patterns generated by the topographic features with which many streaks are associated can account for differences in particle distributions and in the patterns of the wind streaks. Thus, some high backscatter streaks are considered to be zones that are swept free of sedimentary particles to expose rough bedrock; other high backscatter streaks may be lag deposits of dense materials from which low-density grains have been removed (dense materials such as ilmenite or pyrite have dielectric properties that would produce high backscatter patterns). Wind streaks generally occur on slopes < 2° and tend to be oriented toward the equator, consistent with the Hadley model of atmospheric circulation. In addition to wind streaks, other aeolian features on Venus include yardangs(?) and dune fields. The Aglaonice dune field, centered at 25°S, 340°E, covers ∼1290 km^2 and is located in an ejecta flow channel from the Aglaonice impact crater. The Meshkenet dune field, located at 67°N, 90°E, covers ∼17,120 km^2 in a valley between Ishtar Terra and Meshkenet Tessera. Wind streaks associated with both dune fields suggest that the dunes are of transverse forms in which the dune crests are perpendicular to the prevailing winds. Dunes on Venus signal the presence of sand-size (∼60 to 2,000 μm) grains. The possible yardangs are found at 9°N, 60.5°E, about 300 km southeast of the crater Mead. Although most aeolian features are concentrated in smooth plains near the equator, the occurrence of wind streaks is widespread, and some have been found at all latitudes and elevations. They demonstrate that aeolian processes operate widely on Venus. The intensity of wind erosion and deposits, however, varies with locality and is dependent on the wind regime and supply of particles
Spectral multiplicity for powers of weakly mixing automorphisms
We study the behavior of maximal multiplicities for the powers of
a weakly mixing automorphism . For some special infinite set we show the
existence of a weakly mixing rank-one automorphism such that
and for all . Moreover, the cardinality
of the set of spectral multiplicities for is not bounded. We have
and , , . We
also construct another weakly mixing automorphism with the following
properties: for but ,
all powers have homogeneous spectrum, and the set of limit points of
the sequence is infinite
Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns
<p>Abstract</p> <p>Background</p> <p>In cerebrospinal fluid (CSF), which is a rich source of biomarkers for neurological diseases, identification of biomarkers requires methods that allow reproducible detection of low abundance proteins. It is therefore crucial to decrease dynamic range and improve assessment of protein abundance.</p> <p>Results</p> <p>We applied LC-MS/MS to compare the performance of two CSF enrichment techniques that immunodeplete either albumin alone (IgYHSA) or 14 high-abundance proteins (IgY14). In order to estimate dynamic range of proteins identified, we measured protein abundance with APEX spectral counting method.</p> <p>Both immunodepletion methods improved the number of low-abundance proteins detected (3-fold for IgYHSA, 4-fold for IgY14). The 10 most abundant proteins following immunodepletion accounted for 41% (IgY14) and 46% (IgYHSA) of CSF protein content, whereas they accounted for 64% in non-depleted samples, thus demonstrating significant enrichment of low-abundance proteins. Defined proteomics experiment metrics showed overall good reproducibility of the two immunodepletion methods and MS analysis. Moreover, offline peptide fractionation in IgYHSA sample allowed a 4-fold increase of proteins identified (520 vs. 131 without fractionation), without hindering reproducibility.</p> <p>Conclusions</p> <p>The novelty of this study was to show the advantages and drawbacks of these methods side-to-side. Taking into account the improved detection and potential loss of non-target proteins following extensive immunodepletion, it is concluded that both depletion methods combined with spectral counting may be of interest before further fractionation, when searching for CSF biomarkers. According to the reliable identification and quantitation obtained with APEX algorithm, it may be considered as a cheap and quick alternative to study sample proteomic content.</p
Long-term outcomes of CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) in a consecutive series of 12 patients.
BACKGROUND: Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a central nervous system inflammatory disease.
OBJECTIVE: To describe the disease course of CLIPPERS.
DESIGN: A nationwide study was implemented to collect clinical, magnetic resonance imaging, cerebrospinal fluid, and brain biopsy specimen characteristics of patients with CLIPPERS.
SETTING: Academic research.
PATIENTS: Twelve patients with CLIPPERS.
MAIN OUTCOME MEASURES: The therapeutic management of CLIPPERS was evaluated.
RESULTS: Among 12 patients, 42 relapses were analyzed. Relapses lasted a mean duration of 2.5 months, manifested frequent cerebellar ataxia and diplopia, and were associated with a mean Expanded Disability Status Scale (EDSS) score of 4. Besides typical findings of CLIPPERS, magnetic resonance imaging showed brainstem mass effect in 5 patients, extensive myelitis in 3 patients, and closed ring enhancement in 1 patient. Inconstant oligoclonal bands were found on cerebrospinal fluid investigation in 4 patients, with an increased T-cell ratio of CD4 to CD8. Among 7 available brain biopsy specimens, staining was positive for perivascular CD4 T lymphocytes in 5 samples. Thirty-eight of 42 relapses were treated with pulse corticosteroid therapy, which led to improvement, with a mean residual EDSS score of 1.9 (range, 0-7). In 1 patient with untreated relapses, scores on the EDSS progressively increased to a score of 10 at death. Among 5 patients without long-term corticosteroid therapy, the mean annualized relapse rate was 0.5 (range, 0.25-2.8). Among 7 patients taking oral corticosteroids, no relapses occurred in those whose daily dose was 20 mg or higher. No progressive course of CLIPPERS was observed. Four patients with a final EDSS score of 4 or higher had experienced previous severe relapses (EDSS score, ≥5) and brainstem and spinal cord atrophy.
CONCLUSIONS: CLIPPERS is a relapsing-remitting disorder without progressive forms. Long-term disability is correlated with the severity of previous relapses. Further studies are needed to confirm that prolonged corticosteroid therapy prevents further relapses.journal article2012 Julimporte
ENTROPY THEORY WITHOUT PAST
This paper treats the Pinsker algebra of a dynamical system in a way which avoids the use of an ordering on the acting group. This enables us to prove some of the classical results about entropy and the Pinsker algebra in the general setup of measure preserving dynamical systems, where the acting group is a discrete countable amenable group. We prove a basic disjointness theorem which asserts the relative disjointness in the sense of Furstenberg, of 0-entropy extensions from completely positive entropy (c.p.e.) extensions. This theorem is used to prove several classical results in the general setup. E.g. we show that the Pinsker factor of a product system is equal to the product of the Pinsker factors of the component systems. Another application is to obtain a generalization (as well as a simpler proof) of the quasifactor theorem for 0-entropy systems of [GW]
Entropy Theory without Past
. This paper treats the Pinsker algebra of a dynamical system in a way which avoids the use of an ordering on the acting group. This enables us to prove some of the classical results about entropy and the Pinsker algebra in the general setup of measure preserving dynamical systems, where the acting group is a discrete countable amenable group. We prove a basic disjointness theorem which asserts the relative disjointness in the sense of Furstenberg, of 0-entropy extensions from completely positive entropy (c.p.e.) extensions. This theorem is used to prove several classical results in the general setup. E.g. we show that the Pinsker factor of a product system is equal to the product of the Pinsker factors of the component systems. Another application is to obtain a generalization (as well as a simpler proof) of the quasifactor theorem for 0-entropy systems of [GW]. x0. Introduction The classical theory of entropy was developed for Z actions and was based in part on the natural order on ..
- …