2 research outputs found

    cfDNA correlates with endothelial damage after cardiac surgery with prolonged cardiopulmonary bypass and amplifies NETosis in an intracellular TLR9-independent manner

    No full text
    Abstract Cardiopulmonary bypass (CPB) provokes inflammation culminating in organ dysfunction and increased mortality. Recently, neutrophil extracellular traps (NETs) have been found to be involved in a variety of cardiovascular diseases promoting tissue and organ injury. Here, we aimed to elaborate the proinflammatory potential of circulating cell-free (cf)DNA in patients undergoing cardiac surgery with CPB. Plasma was collected pre- and postoperatively as well as at d1, d3, d5 and d8 after surgery. At d1, we found circulating cfDNA levels to be significantly increased in patients with prolonged CPB duration (>100 min) when compared to those with shorter CPB times (CPB < 100 min). Increased CPB duration yielded in higher levels of circulating mitochondrial (mt)DNA, soluble thrombomodulin (sCD141) and ICAM-1, reflecting endothelial damage. Positive correlation between cfDNA and sCD141 was demonstrated at all time points. Plasma and cfDNA from patients with CPB > 100 min induced NETs release by neutrophils from healthy donors which was not suppressed by inhibitors of intracellular toll-like receptor (TLR)9. DNA binding to neutrophils’ surface (s)TLR9 has been evidenced. Altogether, we demonstrate that elevated plasma cfDNA might be useful to assess CPB-mediated detrimental effects, including endothelial damage, in cardiac surgical patients with prolonged CPB duration. cfDNA-triggered NETosis is independent of classical TLR9 signaling
    corecore