5,902 research outputs found
Variation of the glass transition temperature with rigidity and chemical composition
The effects of flexibility and chemical composition in the variation of the
glass transition temperature are obtained by using the Lindemann criteria, that
relates melting temperature with atomic vibrations. Using this criteria and
that floppy modes at low frequencies enhance in a considerable way the average
cuadratic displacement, we show that the consequence is a modified glass
transition temperature. This approach allows to obtain in a simple way the
empirically modified Gibbs-DiMarzio law, which has been widely used in
chalcogenide glasses to fit the changes in the glass transition temperature
with the chemical composition . The method predicts that the constant that
appears in the law depends upon the ratio of two characteristic frequencies (or
temperatures). Then, the constant for the Se-Ge-As glass is estimated by using
the experimental density of vibrational states, and the result shows a very
good agreement with the experimental fit from glass transition temperature
variation
Algorithms for 3D rigidity analysis and a first order percolation transition
A fast computer algorithm, the pebble game, has been used successfully to
study rigidity percolation on 2D elastic networks, as well as on a special
class of 3D networks, the bond-bending networks. Application of the pebble game
approach to general 3D networks has been hindered by the fact that the
underlying mathematical theory is, strictly speaking, invalid in this case. We
construct an approximate pebble game algorithm for general 3D networks, as well
as a slower but exact algorithm, the relaxation algorithm, that we use for
testing the new pebble game. Based on the results of these tests and additional
considerations, we argue that in the particular case of randomly diluted
central-force networks on BCC and FCC lattices, the pebble game is essentially
exact. Using the pebble game, we observe an extremely sharp jump in the largest
rigid cluster size in bond-diluted central-force networks in 3D, with the
percolating cluster appearing and taking up most of the network after a single
bond addition. This strongly suggests a first order rigidity percolation
transition, which is in contrast to the second order transitions found
previously for the 2D central-force and 3D bond-bending networks. While a first
order rigidity transition has been observed for Bethe lattices and networks
with ``chemical order'', this is the first time it has been seen for a regular
randomly diluted network. In the case of site dilution, the transition is also
first order for BCC, but results for FCC suggest a second order transition.
Even in bond-diluted lattices, while the transition appears massively first
order in the order parameter (the percolating cluster size), it is continuous
in the elastic moduli. This, and the apparent non-universality, make this phase
transition highly unusual.Comment: 28 pages, 19 figure
Asymmetry of jets, lobe size and spectral index in radio galaxies and quasars
We investigate the correlations between spectral index, jet side and extent
of the radio lobes for a sample of nearby FRII radio galaxies. In
Dennett-Thorpe et al. (1997) we studied a sample of quasars and found that the
high surface brightness regions had flatter spectra on the jet side (explicable
as a result of Doppler beaming) whilst the extended regions had spectral
asymmetries dependent on lobe length. Unified schemes predict that asymmetries
due to beaming will be much smaller in narrow-line radio galaxies than in
quasars: we therefore investigate in a similar manner, a sample of radio
galaxies with detected jets. We find that spectral asymmetries in these objects
are uncorrelated with jet sidedness at all brightness levels, but depend on
relative lobe volume. Our results are not in conflict with unified schemes, but
suggest that the differences between the two samples are due primarily to power
or redshift, rather than to orientation. We also show directly that hotspot
spectra steepen as a function of radio power or redshift. Whilst a shift in
observed frequency due to the redshift may account for some of the steepening,
it cannot account for all of it, and a dependence on radio power is required.Comment: accepted for publication in MNRAS, 10 pages; typos/minor correctio
Annual modulation in the scattering of J1819+3845: peculiar plasma velocity and anisotropy
We present two years of monitoring observations of the extremely variable quasar J1819+3845. We observe large yearly changes in the timescale of the variations (from ~ 1 hour to ~ 10 hours at 5GHz). This annual effect can only be explained if the variations are caused by a propagation effect, and thus affected by the Earth's relative speed through the projected intensity pattern. To account for this effect, the scattering plasma must have a transverse velocity with respect to the local standard of rest. The velocity calculated from these observations is in good agreement with that obtained from a two telescope delay experiment (Dennett-Thorpe & de Bruyn 2001). We also show that either the source itself is elongated, or that the scattering plasma is anisotropic, with an axial ratio of >6:1. As the source is extended on scales relevant to the scattering phenomenon, it seems plausible that the anisotropy is due to the source itself, but this remains to be investigated. From the scintillation characteristics we find that the scattering material is a very strong, thin scatterer within ~ten parsecs. We determine a source size at 5GHz of 100 to 900microarcsecs, and associated brightness temperatures of 10^{10} to 10^{12}K
Terminal velocity and drag reduction measurements on superhydrophobic spheres
Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons
Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study
Arm Locking for the Laser Interferometer Space Antenna
The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements
Energy landscape and rigidity
The effects of floppy modes in the thermodynamical properties of a system are
studied. From thermodynamical arguments, we deduce that floppy modes are not at
zero frequency and thus a modified Debye model is used to take into account
this effect. The model predicts a deviation from the Debye law at low
temperatures. Then, the connection between the topography of the energy
landscape, the topology of the phase space and the rigidity of a glass is
explored. As a result, we relate the number of constraints and floppy modes
with the statistics of the landscape. We apply these ideas to a simple model
for which we provide an approximate expression for the number of energy basins
as a function of the rigidity. This allows to understand certains features of
the glass transition, like the jump in the specific heat or the reversible
window observed in chalcogenide glasses.Comment: 1 text+3 eps figure
- …