5 research outputs found

    Genomic Screening Reveals That the Endangered Eucalyptus paludicola (Myrtaceae) Is a Hybrid

    Get PDF
    A hybrid origin for a conservation listed taxon will influence its status and management options. Here, we investigate the genetic origins of a nationally endangered listed taxon—Eucalyptus paludicola—a tree that is restricted to the Fleurieu Peninsula and Kangaroo Island of South Australia. Since its description in 1995, there have been suggestions that this taxon may potentially be a stable hybrid species. Using a high throughput sequencing approach, we developed a panel of polymorphic loci that were screened across E. paludicola and its putative parental species E. cosmophylla and E. ovata. Bayesian clustering of the genotype data identified separate groups comprising E. ovata and E. cosmophylla while E. paludicola individuals were admixed between these two, consistent with a hybrid origin. Hybrid class assignment tests indicate that the majority of E. paludicola individuals (~70%) are F1 hybrids with a low incidence of backcrossing. Most of the post-F1 hybrids were associated with revegetation sites suggesting they may be maladapted and rarely reach maturity under natural conditions. These data support the hypothesis that E. paludicola is a transient hybrid entity rather than a distinct hybrid species. We briefly discuss the conservation implications of our findings

    NuSTAR ground calibration: The Rainwater Memorial Calibration Facility (RaMCaF)

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5-80 keV ) telescope to orbit. The ground calibration of the three flight optics was carried out at the Rainwater Memorial Calibration Facility (RaMCaF) built for this purpose. In this article we present the facility and its use for the ground calibration of the three optics

    Genomic Screening Reveals That the Endangered Eucalyptus paludicola (Myrtaceae) Is a Hybrid

    No full text
    A hybrid origin for a conservation listed taxon will influence its status and management options. Here, we investigate the genetic origins of a nationally endangered listed taxon—Eucalyptus paludicola—a tree that is restricted to the Fleurieu Peninsula and Kangaroo Island of South Australia. Since its description in 1995, there have been suggestions that this taxon may potentially be a stable hybrid species. Using a high throughput sequencing approach, we developed a panel of polymorphic loci that were screened across E. paludicola and its putative parental species E. cosmophylla and E. ovata. Bayesian clustering of the genotype data identified separate groups comprising E. ovata and E. cosmophylla while E. paludicola individuals were admixed between these two, consistent with a hybrid origin. Hybrid class assignment tests indicate that the majority of E. paludicola individuals (~70%) are F1 hybrids with a low incidence of backcrossing. Most of the post-F1 hybrids were associated with revegetation sites suggesting they may be maladapted and rarely reach maturity under natural conditions. These data support the hypothesis that E. paludicola is a transient hybrid entity rather than a distinct hybrid species. We briefly discuss the conservation implications of our findings

    First results from the ground calibration of the NuSTAR flight optics

    Get PDF
    NuSTAR is a hard X-ray satellite experiment to be launched in 2012. Two optics with 10.15 m focal length focus Xrays with energies between 5 and 80 keV onto CdZnTe detectors located at the end of a deployable mast. The FM1 and FM2 flight optics were built at the same time based on the same design and with very similar components, and thus the performance of both is expected to be very similar. We provide an overview of calibration data that is being used to build an optics response model for each optic and describe initial results for energies above 10 keV from the ground calibration of the flight optics. From a preliminary analysis of the data, our current best determination of the overall HPD of both the FM1 and FM2 flight optics is 52", and nearly independent of energy. The statistical error is negligible, and a preliminary estimate of the systematic error is of order 4". The as-measured effective area and HPD meet the toplevel NuSTAR mission sensitivity requirements
    corecore