6,949 research outputs found
Head-on infall of two compact objects: Third post-Newtonian Energy Flux
Head-on infall of two compact objects with arbitrary mass ratio is
investigated using the multipolar post-Minkowskian approximation method. At the
third post-Newtonian order the energy flux, in addition to the instantaneous
contributions, also includes hereditary contributions consisting of the
gravitational-wave tails, tails-of-tails and the tail-squared terms. The
results are given both for infall from infinity and also for infall from a
finite distance. These analytical expressions should be useful for the
comparison with the high accuracy numerical relativity results within the limit
in which post-Newtonian approximations are valid.Comment: 25 pages, 2 figures, This version includes the changes appearing in
the Erratum published in Phys. Rev.
Parton Distributions
I discuss our current understanding of parton distributions. I begin with the
underlying theoretical framework, and the way in which different data sets
constrain different partons, highlighting recent developments. The methods of
examining the uncertainties on the distributions and those physical quantities
dependent on them is analysed. Finally I look at the evidence that additional
theoretical corrections beyond NLO perturbative QCD may be necessary, what type
of corrections are indicated and the impact these may have on the
uncertainties.Comment: Invited talk at "XXI International Symposium on Lepton and Photon
Interactions at High Energies," (Fermilab, Chicago, August 2003). 12 pages,
21 figure
Inclusion of new LHC data in MMHT PDFs
I consider the effects of including a variety of new LHC data sets into the
MMHT approach for PDF determination. I consider the impact of fitting new LHC
and Tevatron data, which leads to clear improvements in some PDF uncertainties.
There are specific issues with ATLAS 7 TeV jet data and I include a discussion
of the treatment of correlated uncertainties and briefly the effects of NNLO
corrections. I also present preliminary results with the inclusion of the high
precison final ATLAS 7 TeV rapidity-dependent data.Comment: 6 pages. To appear in proceedings of DIS2017 Worksho
Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma
We study the conductivity and shear viscosity tensors of a strongly coupled
N=4 super-Yang-Mills plasma which is kept anisotropic by a theta parameter that
depends linearly on one of the spatial dimensions. Its holographic dual is
given by an anisotropic axion-dilaton-gravity background and has recently been
proposed by Mateos and Trancanelli as a model for the pre-equilibrium stage of
quark-gluon plasma in heavy-ion collisions. By applying the membrane paradigm
which we also check by numerical evaluation of Kubo formula and lowest lying
quasinormal modes, we find that the shear viscosity purely transverse to the
direction of anisotropy saturates the holographic viscosity bound, whereas
longitudinal shear viscosities are smaller, providing the first such example
not involving higher-derivative theories of gravity and, more importantly, with
fully known gauge-gravity correspondence.Comment: 4 pages, 2 figures; v3: references added, version to appear in Phys.
Rev. Let
Relativistic Stellar Pulsations With Near-Zone Boundary Conditions
A new method is presented here for evaluating approximately the pulsation
modes of relativistic stellar models. This approximation relies on the fact
that gravitational radiation influences these modes only on timescales that are
much longer than the basic hydrodynamic timescale of the system. This makes it
possible to impose the boundary conditions on the gravitational potentials at
the surface of the star rather than in the asymptotic wave zone of the
gravitational field. This approximation is tested here by predicting the
frequencies of the outgoing non-radial hydrodynamic modes of non-rotating
stars. The real parts of the frequencies are determined with an accuracy that
is better than our knowledge of the exact frequencies (about 0.01%) except in
the most relativistic models where it decreases to about 0.1%. The imaginary
parts of the frequencies are determined with an accuracy of approximately M/R,
where M is the mass and R is the radius of the star in question.Comment: 10 pages (REVTeX 3.1), 5 figs., 1 table, fixed minor typos, published
in Phys. Rev. D 56, 2118 (1997
Prospects for direct detection of circular polarization of gravitational-wave background
We discussed prospects for directly detecting circular polarization signal of
gravitational wave background. We found it is generally difficult to probe the
monopole mode of the signal due to broad directivity of gravitational wave
detectors. But the dipole (l=1) and octupole (l=3) modes of the signal can be
measured in a simple manner by combining outputs of two unaligned detectors,
and we can dig them deeply under confusion and detector noises. Around f~0.1mHz
LISA will provide ideal data streams to detect these anisotropic components
whose magnitudes are as small as ~1 percent of the detector noise level in
terms of the non-dimensional energy density \Omega_{GW}(f).Comment: 5 pages, 1 figure, PRL in pres
Hollowgraphy Driven Holography: Black Hole with Vanishing Volume Interior
Hawking-Bekenstein entropy formula seems to tell us that no quantum degrees
of freedom can reside in the interior of a black hole. We suggest that this is
a consequence of the fact that the volume of any interior sphere of finite
surface area simply vanishes. Obviously, this is not the case in general
relativity. However, we show that such a phenomenon does occur in various
gravitational theories which admit a spontaneously induced general relativity.
In such theories, due to a phase transition (one parameter family degenerates)
which takes place precisely at the would have been horizon, the recovered
exterior Schwarzschild solution connects, by means of a self-similar transition
profile, with a novel 'hollow' interior exhibiting a vanishing spatial volume
and a locally varying Newton constant. This constitutes the so-called
'hollowgraphy' driven holography.Comment: Honorable Mention Essay - Gravity Research Foundation (2010
Components of the gravitational force in the field of a gravitational wave
Gravitational waves bring about the relative motion of free test masses. The
detailed knowledge of this motion is important conceptually and practically,
because the mirrors of laser interferometric detectors of gravitational waves
are essentially free test masses. There exists an analogy between the motion of
free masses in the field of a gravitational wave and the motion of free charges
in the field of an electromagnetic wave. In particular, a gravitational wave
drives the masses in the plane of the wave-front and also, to a smaller extent,
back and forth in the direction of the wave's propagation. To describe this
motion, we introduce the notion of `electric' and `magnetic' components of the
gravitational force. This analogy is not perfect, but it reflects some
important features of the phenomenon. Using different methods, we demonstrate
the presence and importance of what we call the `magnetic' component of motion
of free masses. It contributes to the variation of distance between a pair of
particles. We explicitely derive the full response function of a 2-arm laser
interferometer to a gravitational wave of arbitrary polarization. We give a
convenient description of the response function in terms of the spin-weighted
spherical harmonics. We show that the previously ignored `magnetic' component
may provide a correction of up to 10 %, or so, to the usual `electric'
component of the response function. The `magnetic' contribution must be taken
into account in the data analysis, if the parameters of the radiating system
are not to be mis-estimated.Comment: prints to 29 pages including 9 figures, new title, additional
explanations and references in response to referee's comments, to be
published in Class. Quant. Gra
LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms
The planned Laser Interferometer Space Antenna (LISA) is expected to detect
the inspiral and merger of massive black hole binaries (MBHBs) at z <~ 5 with
signal-to-noise ratios (SNRs) of hundreds to thousands. Because of these high
SNRs, and because these SNRs accrete over periods of weeks to months, it should
be possible to extract the physical parameters of these systems with high
accuracy; for instance, for a ~ 10^6 Msun MBHBs at z = 1 it should be possible
to determine the two masses to ~ 0.1% and the sky location to ~ 1 degree.
However, those are just the errors due to noise: there will be additional
"theoretical" errors due to inaccuracies in our best model waveforms, which are
still only approximate. The goal of this paper is to estimate the typical
magnitude of these theoretical errors. We develop mathematical tools for this
purpose, and apply them to a somewhat simplified version of the MBHB problem,
in which we consider just the inspiral part of the waveform and neglect
spin-induced precession, eccentricity, and PN amplitude corrections. For this
simplified version, we estimate that theoretical uncertainties in sky position
will typically be ~ 1 degree, i.e., comparable to the statistical uncertainty.
For the mass and spin parameters, our results suggest that while theoretical
errors will be rather small absolutely, they could still dominate over
statistical errors (by roughly an order of magnitude) for the strongest
sources. The tools developed here should be useful for estimating the magnitude
of theoretical errors in many other problems in gravitational-wave astronomy.Comment: RevTeX4, 16 pages, 2 EPS figures. Corrected typos, clarified
statement
Updates of PDFs in the MSTW framework
I present results on updates on PDFs which are obtained within the general
framework which led to the MSTW2008 PDF sets. There are some theory and
procedural improvements and a variety of new data sets, including many relevant
up-to-date LHC data. A new set of PDFs is very close to being finalised, with
no significant changes expected to the preliminary PDFs shown here.Comment: 6 pages, 6 figures,Published in PoS DIS (2014
- …