7,913 research outputs found
Locating the magnetospheric ring current
Protons are studied in the global depression of the earth's horizontal magnetic field. It is shown that 10 to 100 keV protons dominate ring current energetics in two preferred regions of cyclotron instability, which serve as stable trapping boundaries for ring current protons. The only apparent means of removing this stably trapped belt of particles are considered to be by charge exchange interactions, or by outward expansion of the plasmapause to erode the ring current. Both of these processes require about two days, which is the characteristic decay period of the main phase depression. Questions whose answers are necessary to formulate a quantitative theory of geomagnetic storms which relates main phase depression to solar wind parameters are included
Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field
Unstable growth rate of unducted whistler waves propagating at angle to geomagnetic fiel
Universal properties of the near-horizon optical geometry
We make use of the fact that the optical geometry near a static
non-degenerate Killing horizon is asymptotically hyperbolic to investigate
universal features of black hole physics. We show how the Gauss-Bonnet theorem
allows certain lensing scenarios to be ruled in or out. We find rates for the
loss of scalar, vector and fermionic `hair' as objects fall quasi- statically
towards the horizon. In the process we find the Lienard-Wiechert potential for
hyperbolic space and calculate the force between electrons mediated by
neutrinos, extending the flat space result of Feinberg and Sucher. We use the
enhanced conformal symmetry of the Schwarzschild and Reissner-Nordstrom
backgrounds to re-derive the electrostatic field due to a point charge in a
simple fashion
Propagation of gravitational waves in multimetric gravity
We discuss the propagation of gravitational waves in a recently discussed
class of theories containing N >= 2 metric tensors and a corresponding number
of standard model copies. Using the formalism of gauge-invariant linear
perturbation theory we show that all gravitational waves propagate at the speed
of light. We then employ the Newman-Penrose formalism to show that two to six
polarizations of gravitational waves may exist, depending on the parameters
entering the equations of motion. This corresponds to E(2) representations N_2,
N_3, III_5 and II_6. We finally apply our general discussion to a recently
presented concrete multimetric gravity model and show that it is of class N_2,
i.e., it allows only two tensor polarizations, as it is the case for general
relativity. Our results provide the theoretical background for tests of
multimetric gravity theories using the upcoming gravitational wave experiments.Comment: 21 pages, no figures, journal versio
Relativistic Radiative Transfer for Spherical Flows
We present a new complete set of Lagrangian relativistic hydrodynamical
equations describing the transfer of energy and momentum between a standard
fluid and a radiation fluid in a general non-stationary spherical flow. The new
set of equations has been derived for a particular application to the study of
the cosmological Quark--Hadron transition but can also be used in other
contexts.Comment: 28 pages, 9 postscript figs, Plain Te
Model-independent test of gravity with a network of ground-based gravitational-wave detectors
The observation of gravitational waves with a global network of
interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will
make it possible to probe into the nature of space-time structure. Besides
Einstein's general theory of relativity, there are several theories of
gravitation that passed experimental tests so far. The gravitational-wave
observation provides a new experimental test of alternative theories of gravity
because a gravitational wave may have at most six independent modes of
polarization, of which properties and number of modes are dependent on theories
of gravity. This paper proposes a method to reconstruct the independent modes
of polarization in time-series data of an advanced detector network. Since the
method does not rely on any specific model, it gives model-independent test of
alternative theories of gravity
Complex Wave Numbers in the Vicinity of the Schwarzschild Event Horizon
This paper is devoted to investigate the cold plasma wave properties outside
the event horizon of the Schwarzschild planar analogue. The dispersion
relations are obtained from the corresponding Fourier analyzed equations for
non-rotating and rotating, non-magnetized and magnetized backgrounds. These
dispersion relations provide complex wave numbers. The wave numbers are shown
in graphs to discuss the nature and behavior of waves and the properties of
plasma lying in the vicinity of the Schwarzschild event horizon.Comment: 21 pages, 9 figures, accepted for publication Int. J. Mod. Phys.
Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives
We investigate the dynamical motion of particles on a two-dimensional
symmetric periodic substrate in the presence of both a dc drive along a
symmetry direction of the periodic substrate and an additional circular ac
drive. For large enough ac drives, the particle orbit encircles one or more
potential maxima of the periodic substrate. In this case, when an additional
increasing dc drive is applied in the longitudinal direction, the longitudinal
velocity increases in a series of discrete steps that are integer multiples of
the lattice constant of the substrate times the frequency. Fractional steps can
also occur. These integer and fractional steps correspond to distinct stable
dynamical orbits. A number of these phases also show a rectification in the
positive or negative transverse direction where a non-zero transverse velocity
occurs in the absence of a dc transverse drive. We map out the phase diagrams
of the regions of rectification as a function of ac amplitude, and find a
series of tongues. Most of the features, including the steps in the
longitudinal velocity and the transverse rectification, can be captured with a
simple toy model and by arguments from nonlinear maps. We have also
investigated the effects of thermal disorder and incommensuration on the
rectification phenomena, and find that for increasing disorder, the
rectification regions are gradually smeared and the longitudinal velocity steps
are no longer flat but show a linearly increasing velocity.Comment: 14 pages, 17 postscript figure
Dynamic black holes through gravitational collapse: Analysis of multipole moment of the curvatures on the horizon
We have investigated several properties of rapidly rotating dynamic black
holes generated by gravitational collapse of rotating relativistic stars. At
present, numerical simulations of the binary black hole merger are able to
produce a Kerr black hole of J_final / M_final^2 up to = 0.91, of gravitational
collapse from uniformly rotating stars up to J_final / M_final^2 ~ 0.75, where
J_final is the total angular momentum and M_final the total gravitational mass
of the hole. We have succeeded in producing a dynamic black hole of spin
J_final / M_final^2 ~ 0.95 through the collapse of differentially rotating
relativistic stars. We have investigated those dynamic properties through
diagnosing multipole moment of the horizon, and found the following two
features. Firstly, two different definitions of the angular momentum of the
hole, the approximated Killing vector approach and dipole moment of the current
multipole approach, make no significant difference to our computational
results. Secondly, dynamic hole approaches a Kerr by gravitational radiation
within the order of a rotational period of an equilibrium star, although the
dynamic hole at the very forming stage deviates quite far from a Kerr. We have
also discussed a new phase of quasi-periodic waves in the gravitational
waveform after the ringdown in terms of multipole moment of the dynamic hole.Comment: 13 pages with 19 figures, revtex4-1.cls. Accepted for publication in
the Physical Review
Mitochondrial Dna Replacement Versus Nuclear Dna Persistence
In this paper we consider two populations whose generations are not
overlapping and whose size is large. The number of males and females in both
populations is constant. Any generation is replaced by a new one and any
individual has two parents for what concerns nuclear DNA and a single one (the
mother) for what concerns mtDNA. Moreover, at any generation some individuals
migrate from the first population to the second.
In a finite random time , the mtDNA of the second population is completely
replaced by the mtDNA of the first. In the same time, the nuclear DNA is not
completely replaced and a fraction of the ancient nuclear DNA persists. We
compute both and . Since this study shows that complete replacement of
mtDNA in a population is compatible with the persistence of a large fraction of
nuclear DNA, it may have some relevance for the Out of Africa/Multiregional
debate in Paleoanthropology
- …