307 research outputs found

    Solving the BFKL Equation with Running Coupling

    Get PDF
    We describe a formalism for solving the BFKL equation with a coupling that runs for momenta above a certain infrared cutoff. By suitably choosing matching conditions proper account is taken of the fact that the BFKL diffusion implies that the solution in the infrared (fixed coupling) regime depends upon the solution in the ultraviolet (running coupling) regime and vice versa. Expanding the BFKL kernel to a given order in the ratio of the transverse momenta allows arbitrary accuracy to be achieved.Comment: 11 pages, 2 fig

    Evaporation of a two-dimensional charged black hole

    Get PDF
    We construct a dilatonic two-dimensional model of a charged black hole. The classical solution is a static charged black hole, characterized by two parameters, mm and qq, representing the black hole's mass and charge. Then we study the semiclassical effects, and calculate the evaporation rate of both mm and qq, as a function of these two quantities. Analyzing this dynamical system, we find two qualitatively different regimes, depending on the electromagnetic coupling constant gAg_{A}. If the latter is greater than a certain critical value, the charge-to-mass ratio decays to zero upon evaporation. On the other hand, for gAg_{A} smaller than the critical value, the charge-to-mass ratio approaches a non-zero constant that depends on gAg_{A} but not on the initial values of mm and qq.Comment: Latex, 30 pages, accepted for publication in Phys. Rev.

    Viral Retinitis following Intraocular or Periocular Corticosteroid Administration: A Case Series and Comprehensive Review of the Literature.

    Get PDF
    Abstract Purpose: To describe viral retinitis following intravitreal and periocular corticosteroid administration. Methods: Retrospective case series and comprehensive literature review. Results: We analyzed 5 unreported and 25 previously published cases of viral retinitis following local corticosteroid administration. Causes of retinitis included 23 CMV (76.7%), 5 HSV (16.7%), and 1 each VZV and unspecified (3.3%). Two of 22 tested patients (9.1%) were HIV positive. Twenty-one of 30 (70.0%) cases followed one or more intravitreal injections of triamcinolone acetonide (TA), 4 (13.3%) after one or more posterior sub-Tenon injections of TA, 3 (10.0%) after placement of a 0.59-mg fluocinolone acetonide implant (Retisert), and 1 (3.3%) each after an anterior subconjunctival injection of TA (together with IVTA), an anterior chamber injection, and an anterior sub-Tenon injection. Mean time from most recent corticosteroid administration to development of retinitis was 4.2 months (median 3.8; range 0.25-13.0). Twelve patients (40.0%) had type II diabetes mellitus. Treatments used included systemic antiviral agents (26/30, 86.7%), intravitreal antiviral injections (20/30, 66.7%), and ganciclovir intravitreal implants (4/30, 13.3%). Conclusions: Viral retinitis may develop or reactivate following intraocular or periocular corticosteroid administration. Average time to development of retinitis was 4 months, and CMV was the most frequently observed agent. Diabetes was a frequent co-morbidity and several patients with uveitis who developed retinitis were also receiving systemic immunosuppressive therapy

    The Strange Parton Distribution of the Nucleon: Global Analysis and Applications

    Get PDF
    The strangeness degrees of freedom in the parton structure of the nucleon are explored in the global analysis framework, using the new CTEQ6.5 implementation of the general mass perturbative QCD formalism of Collins. We systematically determine the constraining power of available hard scattering experimental data on the magnitude and shape of the strange quark and anti-quark parton distributions. We find that current data favor a distinct shape of the strange sea compared to the isoscalar non-strange sea. A new reference parton distribution set, CTEQ6.5S0, and representative sets spanning the allowed ranges of magnitude and shape of the strange distributions, are presented. Some applications to physical processes of current interest in hadron collider phenomenology are discussed.Comment: 19 pages; revised version submitted to JHE

    Hawking Spectrum and High Frequency Dispersion

    Get PDF
    We study the spectrum of created particles in two-dimensional black hole geometries for a linear, hermitian scalar field satisfying a Lorentz non-invariant field equation with higher spatial derivative terms that are suppressed by powers of a fundamental momentum scale k0k_0. The preferred frame is the ``free-fall frame" of the black hole. This model is a variation of Unruh's sonic black hole analogy. We find that there are two qualitatively different types of particle production in this model: a thermal Hawking flux generated by ``mode conversion" at the black hole horizon, and a non-thermal spectrum generated via scattering off the background into negative free-fall frequency modes. This second process has nothing to do with black holes and does not occur for the ordinary wave equation because such modes do not propagate outside the horizon with positive Killing frequency. The horizon component of the radiation is astonishingly close to a perfect thermal spectrum: for the smoothest metric studied, with Hawking temperature TH0.0008k0T_H\simeq0.0008k_0, agreement is of order (TH/k0)3(T_H/k_0)^3 at frequency ω=TH\omega=T_H, and agreement to order TH/k0T_H/k_0 persists out to ω/TH45\omega/T_H\simeq 45 where the thermal number flux is O(1020O(10^{-20}). The flux from scattering dominates at large ω\omega and becomes many orders of magnitude larger than the horizon component for metrics with a ``kink", i.e. a region of high curvature localized on a static worldline outside the horizon. This non-thermal flux amounts to roughly 10\% of the total luminosity for the kinkier metrics considered. The flux exhibits oscillations as a function of frequency which can be explained by interference between the various contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi

    Wave Properties of Plasma Surrounding the Event Horizon of a Non-Rotating Black Hole

    Full text link
    We have studied the wave properties of the cold and isothermal plasma in the vicinity of the Schwarzschild black hole event horizon. The Fourier analyzed perturbed 3+1 GRMHD equations are taken on the basis of which the complex dispersion relations are obtained for non-rotating, rotating non-magnetized and rotating magnetized backgrounds. The propagation and attenuation vectors along with the refractive index are obtained (shown in graphs) to study the dispersive properties of the medium near the event horizon. The results show that no information can be obtained from the Schwarzschild magnetosphere. Further, the pressure ceases the existence of normal dispersion of waves.Comment: 31 pages, 21 figures, accepted for publication in Canadian J. Phy

    Plasma Wave Properties of the Schwarzschild Magnetosphere in a Veselago Medium

    Full text link
    We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a Veselago medium. Linear perturbation in rotating (non-magnetized and magnetized) plasma is introduced and their Fourier analysis is considered. We discuss wave properties with the help of wave vector, refractive index and change in refractive index in the form of graphs. It is concluded that some waves move away from the event horizon in this unusual medium. We conclude that for the rotating non-magnetized plasma, our results confirm the presence of Veselago medium while the rotating magnetized plasma does not provide any evidence for this medium.Comment: 20 pages, 15 figures, accepted for publication in Astrophys. Space Sc

    Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space

    Full text link
    We investigate transverse electromagnetic waves propagating in a plasma in the de Sitter space. Using the 3+1 formalism we derive the relativistic two-fluid equations to take account of the effects due to the horizon and describe the set of simultaneous linear equations for the perturbations. We use a local approximation to investigate the one-dimensional radial propagation of Alfv\'en and high frequency electromagnetic waves and solve the dispersion relation for these waves numerically.Comment: 19 pages, 12 figure

    Black Hole Evaporation in the Presence of a Short Distance Cutoff

    Full text link
    A derivation of the Hawking effect is given which avoids reference to field modes above some cutoff frequency ωcM1\omega_c\gg M^{-1} in the free-fall frame of the black hole. To avoid reference to arbitrarily high frequencies, it is necessary to impose a boundary condition on the quantum field in a timelike region near the horizon, rather than on a (spacelike) Cauchy surface either outside the horizon or at early times before the horizon forms. Due to the nature of the horizon as an infinite redshift surface, the correct boundary condition at late times outside the horizon cannot be deduced, within the confines of a theory that applies only below the cutoff, from initial conditions prior to the formation of the hole. A boundary condition is formulated which leads to the Hawking effect in a cutoff theory. It is argued that it is possible the boundary condition is {\it not} satisfied, so that the spectrum of black hole radiation may be significantly different from that predicted by Hawking, even without the back-reaction near the horizon becoming of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2

    A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    Get PDF
    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cross-section calculation can be achieved with reasonably small look-up table size by using the examples of jet production and electro-weak boson (Z, W) production in proton-proton collisions at a center-of-mass energy of 14 TeV at the LHC. The use of this technique in PDF fitting is demonstrated in a PDF-fit to HERA data and simulated LHC jet cross-sections as well as in a study of the jet cross-section uncertainties at various centre-of-mass energies
    corecore