6,884 research outputs found

    On the structure of line-driven winds near black holes

    Full text link
    A general physical mechanism of the formation of line-driven winds at the vicinity of strong gravitational field sources is investigated in the frame of General Relativity. We argue that gravitational redshifting should be taken into account to model such outflows. The generalization of the Sobolev approximation in the frame of General Relativity is presented. We consider all processes in the metric of a nonrotating (Schwarzschild) black hole. The radiation force that is due to absorbtion of the radiation flux in lines is derived. It is demonstrated that if gravitational redshifting is taken into account, the radiation force becomes a function of the local velocity gradient (as in the standard line-driven wind theory) and the gradient of g00g_{00}. We derive a general relativistic equation of motion describing such flow. A solution of the equation of motion is obtained and confronted with that obtained from the Castor, Abbott & Klein (CAK) theory. It is shown that the proposed mechanism could have an important contribution to the formation of line-driven outflows from compact objects.Comment: 20 pages, submitted to Ap

    Recent Progress in Parton Distributions and Implications for LHC Physics

    Full text link
    I outline some of the most recent developments on the global fit to parton distributions performed by the MRST collaboration.Comment: 6 pages, 7 figures. To appear in proceedings of XIII International Workshop on Deep Inelastic Scattering, April,27 - May,1, 2005, Madison, Wisconsin, US

    Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments

    Full text link
    We present a new calculation of the cross sections for charged current (CC) and neutral current (NC) νN\nu N and νˉN\bar{\nu} N interactions in the neutrino energy range 104<Eν<101210^{4}<E_{\nu}<10^{12} GeV using the most recent MSTW parton distribution functions (PDFs), MSTW 2008. We also present the associated uncertainties propagated from the PDFs, as well as parametrizations of the cross section central values, their uncertainty bounds, and the inelasticity distributions for ease of use in Monte Carlo simulations. For the latter we only provide parametrizations for energies above 10710^7 GeV. Finally, we assess the feasibility of future neutrino experiments to constrain the νN\nu N cross section in the ultra-high energy (UHE) regime using a technique that is independent of the flux spectrum of incident neutrinos. A significant deviation from the predicted Standard Model cross sections could be an indication of new physics, such as extra space-time dimensions, and we present expected constraints on such models as a function of the number of events observed in a future subterranean neutrino detector.Comment: 20 pages, 13 figures, 5 tables, published in Phys.Rev.D. This version fixes a typo in Equation 16 of the publication. Also since version v1, the following changes are in v2 and also in the published version: tables with cs values, parametrization of the y distribution at low-y improved, the discussions on likelihood and also earth absorption are expanded, added a needed minus sign in Eq. 17 of v

    Tidal coupling of a Schwarzschild black hole and circularly orbiting moon

    Get PDF
    We describe the possibility of using LISA's gravitational-wave observations to study, with high precision, the response of a massive central body to the tidal gravitational pull of an orbiting, compact, small-mass object. Motivated by this application, we use first-order perturbation theory to study tidal coupling for an idealized case: a massive Schwarzschild black hole, tidally perturbed by a much less massive moon in a distant, circular orbit. We investigate the details of how the tidal deformation of the hole gives rise to an induced quadrupole moment in the hole's external gravitational field at large radii. In the limit that the moon is static, we find, in Schwarzschild coordinates and Regge-Wheeler gauge, the surprising result that there is no induced quadrupole moment. We show that this conclusion is gauge dependent and that the static, induced quadrupole moment for a black hole is inherently ambiguous. For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a recent result of Poisson) a time-varying induced quadrupole moment that is proportional to the time derivative of the moon's tidal field. As a partial analog of a result derived long ago by Hartle for a spinning hole and a stationary distant companion, we show that the orbiting moon's tidal field induces a tidal bulge on the hole's horizon, and that the rate of change of the horizon shape leads the perturbing tidal field at the horizon by a small angle.Comment: 14 pages, 0 figures, submitted to Phys. Rev.

    Gravitational wave scintillation by a stellar cluster

    Get PDF
    The diffraction effects on gravitational waves propagating through a stellar cluster are analyzed in the relevant approximation of Fresnel diffraction limit. We find that a gravitational wave scintillation effect - similar to the radio source scintillation effect - comes out naturally, implying that the gravitational wave intensity changes in a characteristic way as the observer moves.Comment: 9 pages, in press in IJMP
    • …
    corecore