326 research outputs found

    No changes in overall AMOC strength in interglacial PMIP4 time slices

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) is a key mechanism of poleward heat transport and an important part of the global climate system. How it responded to past changes in forcing, such as those experienced during Quaternary interglacials, is an intriguing and open question. Previous modelling studies suggest an enhanced AMOC in the mid-Holocene compared to the preindustrial period. In earlier simulations from the Palaeoclimate Modelling Intercomparison Project (PMIP), this arose from feedbacks between sea ice and AMOC changes, which were dependent on resolution. Here we present an initial analysis of recently available PMIP4 simulations for three experiments representing different interglacial conditions – one 127 000 years ago within the Last Interglacial (127 ka, called lig127k), one in the middle of the Holocene (midHolocene, 6 ka), and a preindustrial control simulation (piControl, 1850 CE). Both lig127k and midHolocene have altered orbital configurations compared to piControl. The ensemble mean of the PMIP4 models shows the strength of the AMOC does not markedly change between the midHolocene and piControl experiments or between the lig127k and piControl experiments. Therefore, it appears orbital forcing itself does not alter the overall AMOC. We further investigate the coherency of the forced response in AMOC across the two interglacials, along with the strength of the signal, using eight PMIP4 models which performed both interglacial experiments. Only two models show a stronger change with the stronger forcing, but those models disagree on the direction of the change. We propose that the strong signals in these two models are caused by a combination of forcing and the internal variability. After investigating the AMOC changes in the interglacials, we further explored the impact of AMOC on the climate system, especially on the changes in the simulated surface temperature and precipitation. After identifying the AMOC's fingerprint on the surface temperature and rainfall, we demonstrate that only a small percentage of the simulated surface climate changes could be attributed to the AMOC. Proxy records of sedimentary ratio during the two interglacial periods both show a similar AMOC strength compared to the preindustrial, which fits nicely with the simulated results. Although the overall AMOC strength shows minimal changes, future work is required to explore whether this occurs through compensating variations in the different components of AMOC (such as Iceland–Scotland overflow water). This line of evidence cautions against interpreting reconstructions of past interglacial climate as being driven by AMOC, outside of abrupt events

    Surface climate signals transmitted rapidly to deep North Atlantic throughout last millennium

    Get PDF
    Instrumental observations of subsurface ocean warming imply that ocean heat uptake has slowed 20th-century surface warming. We present high-resolution records from subpolar North Atlantic sediments that are consistent with instrumental observations of surface and deep warming/freshening and in addition reconstruct the surface-deep relation of the last 1200 years. Sites from ~1300 meters and deeper suggest an ~0.5 degrees celsius cooling across the Medieval Climate Anomaly to Little Ice Age transition that began ~1350 ± 50 common era (CE), whereas surface records suggest asynchronous cooling onset spanning ~600 years. These data suggest that ocean circulation integrates surface variability that is transmitted rapidly to depth by the Atlantic Meridional Ocean Circulation, implying that the ocean moderated Earth’s surface temperature throughout the last millennium as it does today

    Marine Isotope Stage 11c in Europe:Recent advances in marine–terrestrial correlations and their implications for interglacial stratigraphy – a review

    Get PDF
    The interglacial known as MIS 11c (c. 426 000–396 000 years ago) receives intensive international interest because of its perceived role as an analogue for the current interglacial and its importance for understanding future climate change. Here we review the current understanding of the stratigraphy of this interglacial in Europe. This study considers (i) the evidence for the environmental history of this interglacial as reconstructed from the varved lake records from northern Europe, (ii) the climate history of MIS 11c as preserved in the long pollen records of southern Europe and (iii) a comparison of both of these with marine records from the North Atlantic. The result of this review is a discussion of the evidence for millennial and centennial scale climate change found in European records of MIS 11c,the patterns of warming that are seen across this interglacial and the discrepancy in aspects of the duration of this interglacial that seems to exist between the marine and terrestrial records of this warm period. A review of the recent advances in the study of MIS 11c in Europe confirms its importance for understanding both the past evolution of the Holocene and the future patterns of long-term climate change

    Calibration and application of B/Ca, Cd/Ca, and δ^(11)B in Neogloboquadrina pachyderma (sinistral) to constrain CO_2 uptake in the subpolar North Atlantic during the last deglaciation

    Get PDF
    The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO_2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ^(11)B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO_2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)_4−/HCO_3− with a roughly constant partition coefficient (K_D = [B/Ca]_(CaCO_3) / [B(OH)_4−/HCO_3− (seawater)) of 1.48 ± 0.15 × 10^(−3) (2σ), and δ^(11)B in this species is offset below δ^(11)B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant K_D of 1.48 × 10^(−3) to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO_2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO_2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ^(11)B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO_2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO_2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO_2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation

    A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes

    Get PDF
    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycaemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs following the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal and disruption to mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear due to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycaemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycaemia in both cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging

    Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation

    Get PDF
    [1] The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient inline image of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation

    Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 237–252, doi:10.1002/palo.20024.The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.This research is funded by Lamont-Doherty Postdoctoral Fellowship, Lawrence Livermore Fellowship and the Australian National University (J.Y.), by NERC RAPID grant NER/T/S/2002/00436 (N. M. and D. T.), and by a NERC PhD studentship (J.R.).2013-11-3

    Early interglacial legacy of deglacial climate instability

    Get PDF
    Throughout the last glacial cycle millennial timescale variations in atmospheric CO2 occurred in parallel with perturbations in deep ocean circulation, which were themselves reflected by observable changes in surface conditions across the North Atlantic region. Here we use continuous proxy records to argue that an equivalent relationship has held throughout the last 800 kyr, that is, since before the first occurrence of Heinrich events (strictly defined). Our results highlight the importance of internal climate dynamics in amplifying external (insolation) forcing on the climate system to produce the large amplitude of glacial terminations (deglaciations) during the middle to late Pleistocene. We show that terminations are characterized by an interval of intense ice rafting followed by a subsequent and abrupt shift to anomalously warm surface conditions (with respect to the more gradually evolving background state), which we interpret to reflect an abrupt recovery of deep ocean circulation in the Atlantic. According to our synthesis, this is followed by a period of enhanced (or at least anomalous) overturning lasting thousands of years until equilibrium interglacial conditions are attained and during which atmospheric CO2 is likely to decrease. Our results therefore suggest that deglacial oscillations in ocean circulation can have a lasting influence on early interglacial climate and highlight the transient nature of atmospheric CO2 overshoots associated with the onset of some previous interglacials. Accordingly, we suggest that these intervals should be considered as a part of the deglacial process. This has implications for studies concerned with the evolution of atmospheric CO2 during interglacial periods including the Holocene

    Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation

    Get PDF
    Risk of insulin resistance, impaired glycemic control and cardiovascular disease is excessive in overweight and obese populations. We hypothesised that increasing expression of glyoxalase 1 (Glo1) – an enzyme that catalyses the metabolism of reactive metabolite and glycating agent, methylglyoxal – may improve metabolic and vascular health. Dietary bioactive compounds were screened for Glo1 inducer activity in a functional reporter assay, hits confirmed in cell culture and an optimised Glo1 inducer formulation evaluated in a randomised, placebo-controlled crossover clinical trial in 29 overweight and obese subjects. We found trans-resveratrol (tRES) and hesperetin (HESP), at concentrations achieved clinically, synergised to increase Glo1 expression. In highly overweight subjects (BMI >27.5 kg/m2), tRES-HESP co-formulation increased expression and activity of Glo1 (+ 27%. P<0.05), decreased plasma methylglyoxal (-37%, P<0.05) and total body methylglyoxal-protein glycation (-14%, P<0.01). It decreased fasting and postprandial plasma glucose (-5%, P<0.01 and – 6%, P<0.03, respectively), increased Oral Glucose Insulin Sensitivity index (+42 mlmin-1m-2, P<0.02) and improved arterial dilatation ΔFMD/ΔGTND (95%CI 0.13–2.11). In all subjects, it decreased vascular inflammation marker sICAM-1 (-10%, P<0.01). In previous clinical evaluations, tRES and HESP individually were ineffective. tRES-HESP co-formulation could be a suitable treatment for improved metabolic and vascular health in overweight and obese populations
    • …
    corecore