23 research outputs found
LOOKING INTO THE ENERGY LANDSCAPE OF MYOGLOBIN
Using the haem group of myoglobin as a probe in optical experiments makes it possible to study its conformational fluctuations in real time. Results of these experiments can be directly interpreted in terms of the structure of the potential energy surface of the protein. The current view is that proteins have rough energy landscapes comprising a large number of minima which represent conformational substates, and that these substates are hierarchically organized. Here, we show that the energy landscape is characterized by a number of discrete distributions of;barrier heights each representing a tier within a hierarchy of conformational substates. Furthermore, we provide evidence that the energy surface is self-similar and offer suggestions for a characterization of the protein fluctuations
Nonequilibrium spectral diffusion due to laser heating in stimulated photon echo spectroscopy of low temperature glasses
A quantitative theory is developed, which accounts for heating artifacts in
three-pulse photon echo (3PE) experiments. The heat diffusion equation is
solved and the average value of the temperature in the focal volume of the
laser is determined as a function of the 3PE waiting time. This temperature is
used in the framework of nonequilibrium spectral diffusion theory to calculate
the effective homogeneous linewidth of an ensemble of probe molecules embedded
in an amorphous host. The theory fits recently observed plateaus and bumps
without introducing a gap in the distribution function of flip rates of the
two-level systems or any other major modification of the standard tunneling
model.Comment: 10 pages, Revtex, 6 eps-figures, accepted for publication in Phys.
Rev.
Spectral hole burning: examples from photosynthesis
The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research
Real Time Observation of Low-Temperature Protein Motions
Optical methods were used to study the internal motions of myoglobin and cytochrome c. The experiments show that these proteins exhibit conformational fluctuations at temperatures as low as 2 K. The distribution of fluctuation rates can be measured in real time and turns out to be very sharp. The temperature dependence of the structural relaxation of myoglobin follows a simple Arrhenius law. The results are in agreement with existing models for protein dynamics.
Looking into the energy landscape of myoglobin
Using the haem group of myoglobin as a probe in optical experiments makes it possible to study its conformational fluctuations in real time. Results of these experiments can be directly interpreted in terms of the structure of the potential energy surface of the protein. The current view is that proteins have rough energy landscapes comprising a large number of minima which represent conformational substates, and that these substates are hierarchically organized. Here, we show that the energy landscape is characterized by a number of discrete distributions of barrier heights each representing a tier within a hierarchy of conformational substates. Furthermore, we provide evidence that the energy surface is self-similar and offer suggestions for a characterization of the protein fluctuations.