91 research outputs found

    Actions of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) in retinal ON bipolar cells indicate that it is an agonist at L-AP4 receptors.

    Get PDF
    Metabotropic glutamate receptors (mGluRs) include receptors sensitive to L-2-amino-4-phosphonobutyrate (L-AP4) and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD). To determine whether 1S,3R-ACPD is an agonist at retinal L-AP4 receptors, whole cell voltage clamp recordings were obtained from mudpuppy ON bipolar cells in a superfused retinal slice and L-AP4 and 1S,3R-ACPD were bath applied. Both compounds evoked similar outward currents which reversed near 0 mV and were accompanied by an increased input resistance. Responses to both agonists washed out in parallel suggesting they act through the same second messenger pathway(s). Inhibitors of cGMP-PDE activity suppressed responses to both L-AP4 and 1SR,3RS-ACPD, suggesting that both compounds activate cGMP-PDE. Responses to 1S,3R-ACPD were occluded by prior activation of L-AP4 receptors, but not blocked by the non-AP4, mGluR antagonists, L-aminophosphonopropionic acid (L-AP3) or 4-carboxy-3-hydroxyphenylglycine (4C3H-PG). These results indicate that 1S,3R-ACPD is an agonist at L-AP4 receptors. 1S,3S-ACPD and 4C3H-PG evoked outward currents similar to L-AP4 suggesting they may also be L-AP4 receptor agonists. Using the b-wave of the ERG as an assay for ON bipolar cell responses, concentration/response curves were obtained for ACPD enantiomers. The rank-order potency of ACPD enantiomers at L-AP4 receptors in ON bipolar cells is similar to their rank-order potency at non-AP4, mGluRs in brain which suggests that the receptors possess similar binding sites and may be members of a common receptor family

    Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate.

    Get PDF
    PURPOSE: Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. METHODS: We introduced glutamate (10-40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizontal or OFF bipolar cells in the Ambystoma tigrinum retinal slice preparation. RESULTS: Elevating cytosolic glutamate in cone terminals enhanced EPSCs as well as quantal miniature EPSCs (mEPSCs). Enhancement was prevented by inhibiting vesicular glutamate transport with 1S,3R-1-aminocyclopentane-1,3-dicarboxylate in the patch pipette. A low affinity glutamate receptor antagonist, γD-glutamylglycine (1 mM), less effectively inhibited EPSCs evoked from cones loaded with glutamate than control cones indicating that release from cones with supplemental glutamate produced higher glutamate levels in the synaptic cleft. Raising presynaptic glutamate did not alter exocytotic capacitance responses and exocytosis was observed after inhibiting glutamate loading with the vesicular ATPase inhibitor, concanamycin A, suggesting that release capability is not restricted by low vesicular glutamate levels. Variance-mean analysis of currents evoked by flash photolysis of caged glutamate indicated that horizontal cell AMPA receptors have a single channel conductance of 10.1 pS suggesting that ~8.7 GluRs contribute to each mEPSC. CONCLUSIONS: Quantal amplitude at the cone ribbon synapse is capable of adjustment by changes in cytosolic glutamate levels. The small number of channels contributing to each mEPSC suggests that stochastic variability in channel opening could be an important source of quantal variability

    Chloride equilibrium potential in salamander cones

    Get PDF
    BACKGROUND: GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (E(Cl)) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. RESULTS: Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl(- )levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure E(Cl), we applied long depolarizing steps to activate the calcium-activated chloride current (I(Cl(Ca))) and then determined the reversal potential for the current component that was inhibited by the Cl(- )channel blocker, niflumic acid. With this method, E(Cl )was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl(- )flux produced by depolarization with elevated concentrations of K(+). The membrane potentials produced by the various high K(+ )solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that E(Cl )was below -36 mV. CONCLUSIONS: The results of this study indicate that E(Cl )is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABA(a )receptors, glutamate transporters and I(Cl(Ca))

    Removal of extracellular chloride suppresses transmitter release from photoreceptor terminals in the mudpuppy retina.

    Get PDF
    Removal of extracellular Cl- has been shown to suppress light-evoked voltage responses of ON bipolar and horizontal cells, but not photoreceptors or OFF bipolar cells, in the amphibian retina. A substantial amount of experimental evidence has demonstrated that the photoreceptor transmitter, L-glutamate, activates cation, not Cl-, channels in these cells. The mechanism for Cl-free effects was therefore reexamined in a superfused retinal slice preparation from the mudpuppy (Necturus maculosus) using whole-cell voltage and current clamp techniques. In a Cl-free medium, light-evoked currents were maintained in rod and cone photoreceptors but suppressed in horizontal, ON bipolar, and OFF bipolar cells. Changes in input resistance and dark current in bipolar and horizontal cells were consistent with the hypothesis that removal of Cl- suppresses tonic glutamate release from photoreceptors. The persistence of light-evoked voltage responses in OFF bipolar cells, despite the suppression of light-evoked currents, is due to a compensatory increase in input resistance. Focal application of hyperosmotic sucrose to photoreceptor terminals produced currents in bipolar and horizontal cells arising from two sources: (a) evoked glutamate release and (b) direct actions of the hyperosmotic solution on postsynaptic neurons. The inward currents resulting from osmotically evoked release of glutamate in OFF bipolar and horizontal cells were suppressed in a Cl-free medium. For ON bipolar cells, both the direct and evoked components of the hyperosmotic response resulted in outward currents and were thus difficult to separate. However, in some cells, removal of extracellular Cl- suppressed the outward current consistent with a suppression of presynaptic glutamate release. The results of this study suggest that removal of extracellular Cl- suppresses glutamate release from photoreceptor terminals. Thus, it is possible that control of [Cl-] in and around photoreceptors may regulate glutamate release from these cells

    Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina.

    Get PDF
    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (\u3c100 \u3ems) to cones evoked exocytosis followed by rapid endocytosis with a time constant ∼250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons

    Kinetics of exocytosis is faster in cones than in rods.

    Get PDF
    Cone-driven responses of second-order retinal neurons are considerably faster than rod-driven responses. We examined whether differences in the kinetics of synaptic transmitter release from rods and cones may contribute to differences in postsynaptic response kinetics. Exocytosis from rods and cones was triggered by membrane depolarization and monitored in two ways: (1) by measuring EPSCs evoked in second-order neurons by depolarizing steps applied to presynaptic rods or cones during simultaneous paired whole-cell recordings or (2) by direct measurements of exocytotic increases in membrane capacitance. The kinetics of release was assessed by varying the length of the depolarizing test step. Both measures of release revealed two kinetic components to the increase in exocytosis as a function of the duration of a step depolarization. In addition to slow sustained components in both cell types, the initial fast component of exocytosis had a time constant ofcones, \u3e10-fold faster than that of rods. Rod/cone differences in the kinetics of release were substantiated by a linear correlation between depolarization-evoked capacitance increases and EPSC charge transfer. Experiments on isolated rods indicate that the slower kinetics of exocytosis from rods was not a result of rod-rod coupling. The initial rapid release of vesicles from cones can shape the postsynaptic response and may contribute to the faster responses of cone-driven cells observed at light offset

    Paired-pulse depression at photoreceptor synapses.

    Get PDF
    Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80-90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones

    Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses.

    Get PDF
    At most synapses, presynaptic Ca(2+) channels are positioned near vesicle release sites, and increasing this distance reduces synaptic strength. We examined the lateral membrane mobility of presynaptic L-type Ca(2+) channels at photoreceptor ribbon synapses of the tiger salamander (Ambystoma tigrinum) retina. Movements of individual Ca(2+) channels were tracked by coupling quantum dots to an antibody against the extracellular α(2)δ(4) Ca(2+) channel subunit. α(2)δ(4) antibodies labeled photoreceptor terminals and colocalized with antibodies to synaptic vesicle glycoprotein 2 and voltage-gated Ca(2+) channel 1.4 (Ca(V)1.4) α(1) subunits. The results show that Ca(2+) channels are dynamic and move within a confined region beneath the synaptic ribbon. The size of this confinement area is regulated by actin and membrane cholesterol. Fusion of nearby synaptic vesicles caused jumps in Ca(2+) channel position, propelling them toward the outer edge of the confinement domain. Channels rebounded rapidly toward the center. Thus, although Ca(V) channels are mobile, molecular scaffolds confine them beneath the ribbon to maintain neurotransmission even at high release rates

    Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors.

    Get PDF
    Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3-4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%-70% of release from rods involves kiss-and-run with 2.3-4.6 nm fusion pores. Rapid retrieval of vesicles by kiss-and-run may limit membrane disruption of release site function during ongoing release at photoreceptor ribbon synapses

    Calcium regulates vesicle replenishment at the cone ribbon synapse.

    Get PDF
    Cones release glutamate-filled vesicles continuously in darkness, and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording postsynaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady state between vesicle release and replenishment using trains of test pulses. Increasing Ca(2+) currents (I(Ca)) by changing the test step from -30 to -10 mV increased replenishment. Lengthening -30 mV test pulses to match the Ca(2+) influx during 25 ms test pulses to -10 mV produced similar replenishment rates. Reducing Ca(2+) driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of I(Ca) by nifedipine accelerated replenishment. Increasing [Ca(2+)](i) by flash photolysis of caged Ca(2+) also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca(2+) buffer of 0.5 mm EGTA rather than 5 mm EGTA, and diminished by 1 mm BAPTA. This suggests that although release and replenishment exhibited similar Ca(2+) dependencies, release sites areCa(2+) channels but replenishment sites are \u3e200 nm away. Membrane potential thus regulates replenishment by controlling Ca(2+) influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse
    • …
    corecore