680 research outputs found

    Neuronal regulation of glucagon secretion and gluconeogenesis.

    Get PDF
    Hypoglycemia almost never develops in healthy individuals, because multiple hypoglycemia sensing systems, located in the periphery and in the central nervous system, trigger a coordinated counterregulatory hormonal response to restore normoglycemia. This involves not only the secretion of glucagon, but also of epinephrine, norepinephrine, cortisol and growth hormone. Increased hepatic glucose production is also stimulated by direct autonomous nervous connections to the liver that stimulate glycogenolysis and gluconeogenesis. This counterregulatory response, however, becomes deregulated in a significant fraction of diabetes patients that receive insulin therapy. This leads to the risk of developing hypoglycemic episodes, of increasing severity, which negatively impact the quality of life of the patients. How hypoglycemia is detected by the central nervous system is being actively investigated. Recent studies using novel molecular biological, optogenetic and chemogenetic techniques allow the characterization of glucose-sensing neurons, the mechanisms of hypoglycemia detection, the neuronal circuits in which they are integrated and the physiological responses they control. This review discusses recent studies aimed at identifying central hypoglycemia sensing neuronal circuits, how neurons are activated by hypoglycemia and how they restore normoglycemia

    Ins1 (Cre) knock-in mice for beta cell-specific gene recombination.

    Get PDF
    AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells

    The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing.

    Get PDF
    Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion

    Oxidative phosphorylation flexibility in the liver of mice resistant to high-fat diet-induced hepatic steatosis.

    Get PDF
    OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis

    Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression.

    Get PDF
    BACKGROUND/AIMS: Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms. METHODS: We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed. RESULTS: Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation. CONCLUSIONS/INTERPRETATION: Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes

    Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis.

    Get PDF
    The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose-responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this glucoregulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus (DMH), as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15 <sup>CretdTomato</sup> mice and their use to further characterize these neurons. We show that they were glutamatergic and comprised glucose-inhibited and glucose-excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the DMH participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia

    Klf6 protects β-cells against insulin resistance-induced dedifferentiation.

    Get PDF
    In the pathogenesis of type 2 diabetes, development of insulin resistance triggers an increase in pancreatic β-cell insulin secretion capacity and β-cell number. Failure of this compensatory mechanism is caused by a dedifferentiation of β-cells, which leads to insufficient insulin secretion and diabetic hyperglycemia. The β-cell factors that normally protect against dedifferentiation remain poorly defined. Here, through a systems biology approach, we identify the transcription factor Klf6 as a regulator of β-cell adaptation to metabolic stress. We used a β-cell specific Klf6 knockout mouse model to investigate whether Klf6 may be a potential regulator of β-cell adaptation to a metabolic stress. We show that inactivation of Klf6 in β-cells blunts their proliferation induced by the insulin resistance of pregnancy, high-fat high-sucrose feeding, and insulin receptor antagonism. Transcriptomic analysis showed that Klf6 controls the expression of β-cell proliferation genes and, in the presence of insulin resistance, it prevents the down-expression of genes controlling mature β-cell identity and the induction of disallowed genes that impair insulin secretion. Its expression also limits the transdifferentiation of β-cells into α-cells. Our study identifies a new transcription factor that protects β-cells against dedifferentiation, and which may be targeted to prevent diabetes development

    A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion.

    Get PDF
    The counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL) controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons, of the parasympathetic nerve, and lowered glucagon secretion. In contrast, silencing Fgf15 in the dorsomedial hypothalamus increased neuroglucopenia-induced glucagon secretion. These data identify hypothalamic Fgf15 as a regulator of glucagon secretion

    Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow.

    Get PDF
    Glucose transporter 2 (Glut2)-positive cells are sparsely distributed in brain and play an important role in the stimulation of glucagon secretion in response to hypoglycemia. We aimed to determine if Glut2-positive cells can influence another response to hypoglycemia, i.e. increased cerebral blood flow (CBF). CBF of adult male mice devoid of Glut2, either globally (ripglut1:glut2 <sup>-</sup> <sup>/</sup> <sup>-</sup> ) or in the nervous system only (NG2KO), and their respective controls were studied under basal glycemia and insulin-induced hypoglycemia using quantitative perfusion magnetic resonance imaging at 9.4 T. The effect on CBF of optogenetic activation of hypoglycemia responsive Glut2-positive neurons of the paraventricular thalamic area was measured in mice expressing channelrhodopsin2 under the control of the Glut2 promoter. We found that in both ripglut1:glut2 <sup>-</sup> <sup>/</sup> <sup>-</sup> mice and NG2KO mice, CBF in basal conditions was higher than in their respective controls and not further activated by hypoglycemia, as measured in the hippocampus, hypothalamus and whole brain. Conversely, optogenetic activation of Glut2-positive cells in the paraventricular thalamic nucleus induced a local increase in CBF similar to that induced by hypoglycemia. Thus, Glut2 expression in the nervous system is required for the control of CBF in response to changes in blood glucose concentrations
    corecore