3,355 research outputs found
Assistive robotic hand with bi-directional soft actuator for hand impaired patients
Soft wearable robotic hand can assist with hand function for the performance of activities of daily living (ADL). However, existing robotic hands lack a mathematical way to quantify the grip force generated for better controlling the grasp of objects during the performance of ADL. To address this issue, this article presents a soft wearable robotic hand with active control of finger flexion and extension through an elastomeric-based bi-directional soft actuator. This actuator bends and extends by pneumatic actuation at lower air pressure, and a flex sensor embedded inside the actuator measures the angles of the fingers in real-time. Analytical models are established to quantify the kinematic and tip force for gripping of the actuator in terms of the relationship between the input pressure and the bending angle, as well as the output force, and are validated experimentally and by the finite element method. Furthermore, the ability of the soft robotic hand to grasp objects is validated with and without being worn on a human hand. The robotic hand facilitates hand opening and closing by the wearer and successfully assists with grasping objects with sufficient force for ADL-related tasks, and the grip force provided by the actuator is further estimated by the analytical models on two healthy subjects. Results suggest the possibility of the soft robotic hand in providing controllable grip strength in rehabilitation and ADL assistance
Revisiting the Relationship Between Internal Focus and Balance Control in Young and Older Adults
Research highlights the detrimental effect that directing too much conscious attention toward movement can have on postural control. While this concept has received support from many studies, recent evidence demonstrates that this principle does not always translate to aging clinical populations. Given the increasing clinical interest in this topic, the current study evaluated if the original notion (that an internal focus results in compromised balance performance) is upheld in young and older adults during a challenging balance task where we are able to objectively corroborate changes in attentional focus; using an electroencephalography (EEG) method previously identified as an objective indicator of conscious movement control. This method assesses the neural coherence, or âcommunication,â between T3 (verbal-analytical) and Fz (motor-planning) regions of the brain. Thirty-nine young and 40 older adults performed a challenging balance task while holding a 2-meter pole under two randomized conditions: Baseline and Internal focus of attention (directing attention internally toward movement production). Results showed that young adults demonstrated increased EEG T3-Fz coherence in conjunction with increased sway path during the Internal focus condition. However, no significant differences were observed in older adults between conditions for any measure. The current study provides supporting evidence for the detrimental effect that adopting an Internal focus can have on postural controlâespecially in populations able to govern these processes in a relatively âautomaticâ manner (e.g., young adults). However, this work illustrates that such observations may not readily translate between populations and are not robust to age-related changes. Further work is necessary to examine mechanisms underlying this clear translational issue
Further studies on relic neutrino asymmetry generation I: the adiabatic Boltzmann limit, non-adiabatic evolution, and the classical harmonic oscillator analogue of the quantum kinetic equations
We demonstrate that the relic neutrino asymmetry evolution equation derived
from the quantum kinetic equations (QKEs) reduces to the Boltzmann limit that
is dependent only on the instantaneous neutrino number densities, in the
adiabatic limit in conjunction with sufficient damping. An original physical
and/or geometrical interpretation of the adiabatic approximation is given,
which serves as a convenient visual aid to understanding the sharply
contrasting resonance behaviours exhibited by the neutrino ensemble in opposing
collision regimes. We also present a classical analogue for the evolution of
the difference in and number densities which, in the
Boltzmann limit, is akin to the behaviour of the generic reaction with equal forward and reverse reaction rate constants. A
new characteristic quantity, the matter and collision-affected mixing angle of
the neutrino ensemble, is identified here for the first time. The role of
collisions is revealed to be twofold: (i) to wipe out the inherent
oscillations, and (ii) to equilibrate the and number
densities in the long run. Studies on non-adiabatic evolution and its possible
relation to rapid oscillations in lepton number generation also feature, with
the introduction of an adiabaticity parameter for collision-affected
oscillations.Comment: RevTeX, 38 pages including 8 embedded figure
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
Intravenous iron for heart failure, iron deficiency definitions, and clinical response:the IRONMAN trial
BACKGROUND AND AIMS: What is the relationship between blood tests for iron deficiency, including anaemia, and the response to intravenous iron in patients with heart failure?METHODS: In the IRONMAN trial, 1137 patients with heart failure, ejection fraction †45%, and either serum ferritin < 100â
”g/L or transferrin saturation (TSAT) < 20% were randomized to intravenous ferric derisomaltose (FDI) or usual care. Relationships were investigated between baseline anaemia severity, ferritin and TSAT, to changes in haemoglobin from baseline to 4 months, Minnesota Living with Heart Failure (MLwHF) score and 6-minute walk distance achieved at 4 months, and clinical events, including heart failure hospitalization (recurrent) or cardiovascular death.RESULTS: The rise in haemoglobin after administering FDI, adjusted for usual care, was greater for lower baseline TSAT (Pinteraction < .0001) and ferritin (Pinteraction = .028) and more severe anaemia (Pinteraction = .014). MLwHF scores at 4 months were somewhat lower (better) with FDI for more anaemic patients (overall Pinteraction = .14; physical Pinteraction = .085; emotional Pinteraction = .043) but were not related to baseline TSAT or ferritin. Blood tests did not predict difference in achieved walking distance for those randomized to FDI compared to control. The absence of anaemia or a TSAT â„ 20% was associated with lower event rates and little evidence of benefit from FDI. More severe anaemia or TSAT < 20%, especially when ferritin was â„100â
”g/L, was associated with higher event rates and greater absolute reductions in events with FDI, albeit not statistically significant.CONCLUSIONS: This hypothesis-generating analysis suggests that anaemia or TSAT < 20% with ferritin > 100â
”g/L might identify patients with heart failure who obtain greater benefit from intravenous iron. This interpretation requires confirmation.</p
Intravenous iron for heart failure, iron deficiency definitions, and clinical response:the IRONMAN trial
BACKGROUND AND AIMS: What is the relationship between blood tests for iron deficiency, including anaemia, and the response to intravenous iron in patients with heart failure?METHODS: In the IRONMAN trial, 1137 patients with heart failure, ejection fraction †45%, and either serum ferritin < 100â
”g/L or transferrin saturation (TSAT) < 20% were randomized to intravenous ferric derisomaltose (FDI) or usual care. Relationships were investigated between baseline anaemia severity, ferritin and TSAT, to changes in haemoglobin from baseline to 4 months, Minnesota Living with Heart Failure (MLwHF) score and 6-minute walk distance achieved at 4 months, and clinical events, including heart failure hospitalization (recurrent) or cardiovascular death.RESULTS: The rise in haemoglobin after administering FDI, adjusted for usual care, was greater for lower baseline TSAT (Pinteraction < .0001) and ferritin (Pinteraction = .028) and more severe anaemia (Pinteraction = .014). MLwHF scores at 4 months were somewhat lower (better) with FDI for more anaemic patients (overall Pinteraction = .14; physical Pinteraction = .085; emotional Pinteraction = .043) but were not related to baseline TSAT or ferritin. Blood tests did not predict difference in achieved walking distance for those randomized to FDI compared to control. The absence of anaemia or a TSAT â„ 20% was associated with lower event rates and little evidence of benefit from FDI. More severe anaemia or TSAT < 20%, especially when ferritin was â„100â
”g/L, was associated with higher event rates and greater absolute reductions in events with FDI, albeit not statistically significant.CONCLUSIONS: This hypothesis-generating analysis suggests that anaemia or TSAT < 20% with ferritin > 100â
”g/L might identify patients with heart failure who obtain greater benefit from intravenous iron. This interpretation requires confirmation.</p
L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells
Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream targets of these transcription factors are not well characterized. Furthermore, it remains unknown whether additional novel stem cell factors are involved in the establishment and maintenance of the stem cell state.Here we show that a novel gene, L1TD1 (also known as FLJ10884 or ECAT11), is abundantly expressed in undifferentiated hESC. Differentiation of hESC via embryoid body (EB) formation or BMP4 treatment results in the rapid down-regulation of L1TD1 expression. Furthermore, populations of undifferentiated and differentiated hESC were sorted using the stem cell markers SSEA4 and TRA160. Our results show that L1TD1 is enriched in the SSEA4-positive or TRA160-positive population of hESC. Using chromatin immunoprecipitation we found enriched association of Nanog to the predicted promoter region of L1TD1. Furthermore, siRNA-mediated knockdown of Nanog in hESC also resulted in downregulation of L1TD1 expression. Finally, using luciferase reporter assay we demonstrated that Nanog can activate the L1TD1 upstream promoter region. Altogether, these results provide evidence that L1TD1 is a downstream target of Nanog.Taken together, our results suggest that L1TD1 is a downstream target of Nanog and represents a useful marker for identifying undifferentiated hESC
Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events
collected by the Telescope Array (TA) detector in the first 40 months of
operation. Following earlier studies, we examine event sets with energy
thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the
events in right ascension and declination are compatible with an isotropic
distribution in all three sets. We then compare with previously reported
clustering of the UHECR events at small angular scales. No significant
clustering is found in the TA data. We then check the events with E>57 EeV for
correlations with nearby active galactic nuclei. No significant correlation is
found. Finally, we examine all three sets for correlations with the large-scale
structure of the Universe. We find that the two higher-energy sets are
compatible with both an isotropic distribution and the hypothesis that UHECR
sources follow the matter distribution of the Universe (the LSS hypothesis),
while the event set with E>10 EeV is compatible with isotropy and is not
compatible with the LSS hypothesis at 95% CL unless large deflection angles are
also assumed. We show that accounting for UHECR deflections in a realistic
model of the Galactic magnetic field can make this set compatible with the LSS
hypothesis.Comment: 10 pages, 9 figure
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
- âŠ