15,093 research outputs found
Electroweak Symmetry Breaking From Monopole Condensation
We examine models where massless chiral fermions with both "electric" and
"magnetic" hypercharges could form condensates. When some of the fermions are
also electroweak doublets such condensates can break the electroweak gauge
symmetry down to electromagnetism in the correct way. Since ordinary
hypercharge is weakly coupled at the TeV scale, magnetic hypercharge is
strongly coupled and can potentially drive the condensation. Such models are
similar to technicolor, but with hypercharge playing the role of the
technicolor gauge group, so the standard model gauge group breaks itself. A
heavy top mass can be generated via the Rubakov-Callan effect and could thus
decouple the scale of flavor physics from the electroweak scale.Comment: Absence of pseudo-Goldstone bosons explain, discussion of the role of
flavor physics clarified, other minor changes. References adde
Monitoring and controlling bank risk: does risky debt serve any purpose?
To examine whether mandating banks to issue subordinated debt would enhance market monitoring and control risk-taking, the authors extract the credit-spread curve for each banking firm in their sample. After controlling for changes in market and liquidity variables, they find that changes in credit spreads do not reflect changes in bank risk variables. The result is robust to firm type, examination rating, size, leverage, and profitability, as well as to different model specifications. They also find that issuing subordinated debt does not alter banks' risk-taking behavior. They conclude that a mandatory subordinated debt requirement for banks is unlikely to provide the intended benefits of enhancing risk-monitoring or controlling risk-taking.Bank capital ; Risk
Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells
Donor liver-derived dendritic cells (DC) have recently been identified within various lymphoid and nonlymphoid tissues of organ allograft recipients, including nonimmunosuppressed mice transplanted with and permanently accepting major histocompatibility complex (MHC)-disparate hepatic allografts. These findings have raised questions about the basis of the tolerogenicity of the liver—and, in particular, about the properties of liver-derived DC. To study further the structure, immunophenotype and allostimu-latory activity of leukocytes resident in normal mouse (B10.BR; H-2k, I-Ek) liver, a procedure was developed to maximize the yield of viable, nonparenchymal cells (NPC) obtained following collagenase digestion of perfused liver fragments and density centrifugation (Per-coll). These cells comprised populations expressing lymphoid and myeloid cell surface antigens. As compared with spleen cells, they proved good allostimula-tors of naive (BIO; H-2b, I-E") splenic T cells when tested in primary mixed leukocyte reactions (MLR). After overnight (18-hr) incubation of the NPC, enrichment for transiently adherent, low-density (LD) cells on metrizamide gradients permitted the recovery of low numbers of cells (approx. 2-5 × 105 per liver), many of which displayed distinct DC morphology. Flow cytometric analysis revealed that these cells were CD3-, CD4-, CD8-, and B220-, but strongly expressed CD45 (leukocyte-common antigen), and mild-to-moderate levels of CD lib, heat-stable antigen, and CD44. The cells also expressed moderate intensity of NLDC 145 but not 33D1, DC restricted markers which have been shown to be differentially expressed on mouse DC isolated from various organs. This DC-enriched population was more strongly MHC class II(I-Ek)+ than NPC, as determined by immunocytochemistry and flow cytometry and exhibited much more potent allo-stimulatory activity for naive T cells. These findings demonstrate that freshly isolated murine liver NPC, and perhaps their counterparts in situ, exhibit allo-stimulatory activity that is enhanced in the nonadherent, low-density (DC-enriched) fraction after overnight culture. They further suggest that the © 1994 by Williams and Wilkins
A note about the ground state of the hydrogen molecular ion
Three simple parametric trial functions for the molecular ion are presented. Each of them provides subsequently the
most accurate approximation for the Born-Oppenheimer ground state energy among
several-parametric trial functions. These trial functions are chosen following
a criterion of physical adequacy and includes the electronic correlation in the
exponential form , where is a variational
parameter. The Born-Oppenheimer energy is found to be \,a.u., respectively, for optimal equilateral triangular
configuration of protons with the equilibrium interproton distance
\,a.u. The variational energy agrees in three significant digits (s.d.)
with most accurate results available at present as well as for major
expectation values.Comment: 12 pages, 1 figure, 3 table
In vitro osteogenic differentiation of human ES cells
Since their isolation in 1998, human embryonic stem (hES) cells have been shown to be capable of adopting various cell fates in vitro. Here, we present in vitro data demonstrating the directed commitment of human embryonic stem cells to the osteogenic lineage. Human ES cells are shown to respond to factors that promote osteogenesis, leading to activation of the osteogenic markers osteocalcin, parathyroid hormone receptor, bone sialoprotein, osteopontin, cbfa1, and collagen 1. Moreover, the mineralized nodules obtained are composed of hydroxyapatite, further establishing the similarity of osteoblasts in culture to bone. These results show that osteoblasts can be derived from human ES cultures in vitro and provide the basis for comparison of adult and embryonic-derived osteogenesis, and for an investigation of potential applications for hES cells in orthopaedic tissue repair
Kelvin Wave Cascade and Decay of Superfluid Turbulence
Kelvin waves (kelvons)--the distortion waves on vortex lines--play a key part
in the relaxation of superfluid turbulence at low temperatures. We present a
weak-turbulence theory of kelvons. We show that non-trivial kinetics arises
only beyond the local-induction approximation and is governed by three-kelvon
collisions; corresponding kinetic equation is derived. On the basis of the
kinetic equation, we prove the existence of Kolmogorov cascade and find its
spectrum. The qualitative analysis is corroborated by numeric study of the
kinetic equation. The application of the results to the theory of superfluid
turbulence is discussed.Comment: 4 pages, RevTe
Spectrum of turbulent Kelvin-waves cascade in superfluid helium
To explain the observed decay of superfluid turbulence at very low
temperature, it has been proposed that a cascade of Kelvin waves (analogous to
the classical Kolmogorov cascade) transfers kinetic energy to length scales
which are small enough that sound can be radiated away. We report results of
numerical simulations of the interaction of quantized vortex filaments. We
observe the development of the Kelvin-waves cascade, and compute the statistics
of the curvature, the amplitude spectrum (which we compare with competing
theories) and the fractal dimension.Comment: 32 pages, 22 figure
Resonant Processes in a Frozen Gas
We present a theory of resonant processes in a frozen gas of atoms
interacting via dipole-dipole potentials that vary as , where is
the interatomic separation. We supply an exact result for a single atom in a
given state interacting resonantly with a random gas of atoms in a different
state. The time development of the transition process is calculated both on-
and off-resonance, and the linewidth with respect to detuning is obtained as a
function of time . We introduce a random spin Hamiltonian to model a dense
system of resonators and show how it reduces to the previous model in the limit
of a sparse system. We derive approximate equations for the average effective
spin, and we use them to model the behavior seen in the experiments of Anderson
et al. and Lowell et al. The approach to equilibrium is found to be
proportional to ), where the constant is explicitly related to the system's parameters.Comment: 30 pages, 6 figure
Classical artificial two-dimensional atoms: the Thomson model
The ring configurations for classical two-dimensional atoms are calculated
within the Thomson model and compared with the results from `exact' numerical
simulations. The influence of the functional form of the confinement potential
and the repulsive interaction potential between the particles on the
configurations is investigated. We also give exact results on those eigenmodes
of the system whose frequency does not depend on the number of particles in the
system.Comment: 9 pages, RevTeX, 4 figure
- …