14,422 research outputs found
Reducing the linewidth of an atom laser by feedback
A continuous atom laser will almost certainly have a linewidth dominated by
the effect of the atomic interaction energy, which turns fluctuations in the
condensate atom number into fluctuations in the condensate frequency. These
correlated fluctuations mean that information about the atom number could be
used to reduce the frequency fluctuations, by controlling a spatially uniform
potential. We show that feedback based on a physically reasonable quantum
non-demolition measurement of the atom number of the condensate in situ can
reduce the linewidth enormously.Comment: 5 pages, 1 figur
Effects of twin-beam squashed light on a three-level atom
An electro-optical feedback loop can make in-loop light (squashed light)
which produces a photocurrent with noise below the standard quantum limit (such
as squeezed light). We investigate the effect of squashed light interacting
with a three-level atom in the cascade configuration and compare it to the
effects produced by squeezed light and classical noise. It turns out that one
master equation can be formulated for all three types of light and that this
unified formalism can also be applied to the evolution of a two-level atom. We
show that squashed light does not mimic all aspects of squeezed light, and in
particular, it does not produce the characteristic linear intensity dependence
of the population of the upper-most level of the cascade three-level atom.
Nevertheless, it has nonclassical transient effects in the de-excitation.Comment: 12 pages, 6 figure
Electronic and phononic Raman scattering in detwinned YBaCuO and YCaBaCuO: s-wave admixture to the -wave order parameter
Inelastic light (Raman) scattering has been used to study electronic
excitations and phonon anomalies in detwinned, slightly overdoped
YBaCuO and moderately overdoped
YCaBaCuO single crystals. In both samples
modifications of the electronic pair-breaking peaks when interchanging the a-
and b-axis were observed. The lineshapes of several phonon modes involving
plane and apical oxygen vibrations exhibit pronounced anisotropies with respect
to the incident and scattered light field configurations. Based on a
theoretical model that takes both electronic and phononic contributions to the
Raman spectra into account, we attribute the anisotropy of the
superconductivity-induced changes in the phonon lineshapes to a small s-wave
admixture to the pair wave-function. Our theory allows us to
disentangle the electronic Raman signal from the phononic part and to identify
corresponding interference terms. We argue that the Raman spectra are
consistent with an s-wave admixture with an upper limit of 20 percent.Comment: accepted in Phys. Rev. B, 11 page
The influence of long-term inputs of catch crops and cereal straw on yield, protein composition and technological quality of a spring and a winter wheat
Under conditions of restricted nitrogen (N) input such as in organic farming systems, crop N uptake must rely on N mineralised from applied animal manure, crop residues and native soil organic matter. Scarcity of N may impede the production of quality grain for bread production, and input and retention of N in soil are therefore important parameters for soil fertility. Toretain N in the crop-soilsystem, catch crops may be grown in breaks between main crops where they provide a signiļ¬cant sink for N mineralised in late summer and autumn (Thomsen, 2005). In corporation of straw may likewise retain mineralised N by microbial immobilisation (Christensen, 1986) and will also directly add to the N mineralisation potential when the N supplied in the straw accumulates (Thomsen & Christensen, 2004). Under northern European conditions, winter wheat may generally be of lower quality than spring wheat, but winter wheat has a higher yield potential. When the N uptake is mainly based on N mineralised from either applied or indigenous soil organic matter, however, this may even out the quality diļ¬erence between winter and spring wheat as the longer growing season of winter wheat may boost its N utilisation. Growing conditions are highly important for protein quantity whereas main lygenetic factors inļ¬uence protein composition (Amesetal., 1999; Luoetal., 2000). Wheat grain proteins have been classiļ¬ed as albumins, globulins, gliadins and glutenins on the basis of their solubility (Osborne, 1907). Reverse-phase (RP) high performance liquid chromatography (HPLC) allows the quantitative determination of these diļ¬erent ļ¬our protein groups together with single proteins (Ī±5-, Ī±1,2-, Ī±-, Ī³c-type gliadins, x- and Ī³-type high (HMW) and low (LMW) molecular weights subunits of glutenin) (Wieser & Seilmeier, 1998). The proteins can also be divided into polymers (glutenins) or monomers (gliadins, albumins, globulins) based on their aggregating properties. The polymeric proteins are critical for governing wheat ļ¬our processing properties, and their quantity and size distribution reliably measured by size-exclusion (SE) HPLC techniques have been shown to be important indicators of baking quality (Dachkevitch & Autran, 1989; Bateyetal., 1991). The aim of this study was to examine whether wheat yield and baking quality determined by chromatographic techniques together with rheological and chemical quality measurements could be improved by combining agronomic strategies consisting of wheat cultivars and long-term organic matter inputs. The variables tested were (A) a winter wheat and a spring wheat cultivar, (B) three catch crop strategies and (C) four straw incorporation rates
Scaling behavior of spin transport in hydrogenated graphene
We calculate the spin transport of hydrogenated graphene using the
Landauer-B\"uttiker formalism with a spin-dependent tight-binding Hamiltonian.
The advantages of using this method is that it simultaneously gives information
on sheet resistance and localization length as well as spin relaxation length.
Furthermore, the Landauer-B\"uttiker formula can be computed very efficiently
using the recursive Green's function technique. Previous theoretical results on
spin relaxation time in hydrogenated graphene have not been in agreement with
experiments. Here, we study magnetic defects in graphene with randomly aligned
magnetic moments, where interference between spin-channels is explicitly
included. We show that the spin relaxation length and sheet resistance scale
nearly linearly with the impurity concentration. Moreover, the spin relaxation
mechanism in hydrogenated graphene is Markovian only near the charge neutrality
point or in the highly dilute impurity limit
Dirac model of electronic transport in graphene antidot barriers
In order to use graphene for semiconductor applications, such as transistors
with high on/off ratios, a band gap must be introduced into this otherwise
semimetallic material. A promising method of achieving a band gap is by
introducing nanoscale perforations (antidots) in a periodic pattern, known as a
graphene antidot lattice (GAL). A graphene antidot barrier (GAB) can be made by
introducing a 1D GAL strip in an otherwise pristine sheet of graphene. In this
paper, we will use the Dirac equation (DE) with a spatially varying mass term
to calculate the electronic transport through such structures. Our approach is
much more general than previous attempts to use the Dirac equation to calculate
scattering of Dirac electrons on antidots. The advantage of using the DE is
that the computational time is scale invariant and our method may therefore be
used to calculate properties of arbitrarily large structures. We show that the
results of our Dirac model are in quantitative agreement with tight-binding for
hexagonal antidots with armchair edges. Furthermore, for a wide range of
structures, we verify that a relatively narrow GAB, with only a few antidots in
the unit cell, is sufficient to give rise to a transport gap
Electronic and optical properties of graphene antidot lattices: Comparison of Dirac and tight-binding models
The electronic properties of graphene may be changed from semimetallic to
semiconducting by introducing perforations (antidots) in a periodic pattern.
The properties of such graphene antidot lattices (GALs) have previously been
studied using atomistic models, which are very time consuming for large
structures. We present a continuum model that uses the Dirac equation (DE) to
describe the electronic and optical properties of GALs. The advantages of the
Dirac model are that the calculation time does not depend on the size of the
structures and that the results are scalable. In addition, an approximation of
the band gap using the DE is presented. The Dirac model is compared with
nearest-neighbour tight-binding (TB) in order to assess its accuracy. Extended
zigzag regions give rise to localized edge states, whereas armchair edges do
not. We find that the Dirac model is in quantitative agreement with TB for GALs
without edge states, but deviates for antidots with large zigzag regions.Comment: 15 pages, 7 figures. Accepted by Journal of Physics: Condensed matte
Radiation effects in MOS integrated circuits
High energy electron irradiation effects on field effect transistors in integrated circuit device
- ā¦