2,987 research outputs found

    A hierarchical adaptive nonlinear model predictive control approach for maximizing tire force usage in autonomous vehicles

    Full text link
    The ability to reliably maximize tire force usage would improve the safety of autonomous vehicles, especially in challenging edge cases. However, vehicle control near the limits of handling has many challenges, including robustly contending with tire force saturation, balancing model fidelity and computational efficiency, and coordinating inputs with the lower level chassis control system. This work studies Nonlinear Model Predictive Control for limit handling, specifically adapting to changing tire-road conditions and maximally allocating tire force utilization. We present a novel hierarchical framework that combines a single-track model with longitudinal weight transfer dynamics in the predictive control layer, with lateral brake distribution occurring at the chassis control layer. This vehicle model is simultaneously used in an Unscented Kalman Filter for online friction estimation. Comparative experiments on a full-scale vehicle operating on a race track at up to 95% of maximum tire force usage demonstrate the overall practical effectiveness of this approach.Comment: Preprint of accepted paper in Field Robotic

    Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    Get PDF
    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications

    Magnetoresistance Anisotropy of Polycrystalline Cobalt Films: Geometrical-Size- and Domain-Effects

    Full text link
    The magnetoresistance (MR) of 10 nm to 200 nm thin polycrystalline Co-films, deposited on glass and insulating Si(100), is studied in fields up to 120 kOe, aligned along the three principal directions with respect to the current: longitudinal, transverse (in-plane), and polar (out-of-plane). At technical saturation, the anisotropic MR (AMR) in polar fields turns out to be up to twice as large as in transverse fields, which resembles the yet unexplained geometrical size-effect (GSE), previously reported for Ni- and Permalloy films. Upon increasing temperature, the polar and transverse AMR's are reduced by phonon-mediated sd-scattering, but their ratio, i.e. the GSE remains unchanged. Basing on Potters's theory [Phys.Rev.B 10, 4626(1974)], we associate the GSE with an anisotropic effect of the spin-orbit interaction on the sd-scattering of the minority spins due to a film texture. Below magnetic saturation, the magnitudes and signs of all three MR's depend significantly on the domain structures depicted by magnetic force microscopy. Based on hysteresis loops and taking into account the GSE within an effective medium approach, the three MR's are explained by the different magnetization processes in the domain states. These reveal the importance of in-plane uniaxial anisotropy and out-of-plane texture for the thinnest and thickest films, respectively.Comment: 10 pages, 9 figure

    Bioavailability of Microplastics to Marine Zooplankton: Effect of Shape and Infochemicals

    Get PDF
    The underlying mechanisms that influence microplastic ingestion in marine zooplankton remain poorly understood. Here, we investigate how microplastics of a variety of shapes (bead, fiber, and fragment), in combination with the algal-derived infochemicals dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), affect the ingestion rate of microplastics in three species of zooplankton, the copepods Calanus helgolandicus and Acartia tonsa and larvae of the European lobster Homarus gammarus. We show that shape affects microplastic bioavailability to different species of zooplankton, with each species ingesting significantly more of a certain shape: C. helgolandicus—fragments (P < 0.05); A. tonsa—fibers (P < 0.01); H. gammarus larvae—beads (P < 0.05). Thus, different feeding strategies between species may affect shape selectivity. Our results also showed significantly increased ingestion rates by C. helgolandicus on all microplastics that were infused with DMS (P < 0.01) and by H. gammarus larvae and A. tonsa on DMS-infused fibers and fragments (P < 0.05). By using a range of more environmentally relevant microplastics, our findings highlight how the feeding strategies of different zooplankton species may influence their susceptibility to microplastic ingestion. Furthermore, our novel study suggests that species reliant on chemosensory cues to locate their prey may be at an increased risk of ingesting aged microplastics in the marine environment

    Dendritic Hold and Read: A Gated Mechanism for Short Term Information Storage and Retrieval

    Get PDF
    Two contrasting theories have been proposed to explain the mechanistic basis of short term memory. One theory posits that short term memory is represented by persistent neural activity supported by reverberating feedback networks. An alternate, more recent theory posits that short term memory can be supported by feedforward networks. While feedback driven memory can be implemented by well described mechanisms of synaptic plasticity, little is known of possible molecular and cellular mechanisms that can implement feedforward driven memory. Here we report such a mechanism in which the memory trace exists in the form of glutamate-bound but Mg2+-blocked NMDA receptors on the thin terminal dendrites of CA1 pyramidal neurons. Because glutamate dissociates from subsets of NMDA receptors very slowly, excitatory synaptic transmission can leave a silent residual trace that outlasts the electrical activity by hundreds of milliseconds. Read-out of the memory trace is possible if a critical level of these bound-but-blocked receptors accumulates on a dendritic branch that will allow these quasi-stable receptors to sustain a regenerative depolarization when triggered by an independent gating signal. This process is referred to here as dendritic hold and read (DHR). Because the read-out of the input is not dependent on repetition of the input and information flows in a single-pass manner, DHR can potentially support a feedforward memory architecture

    Decay of heavy-light hybrids in HQET sum rules

    Full text link
    The decay widths of the 0^{++} and 1^{-+} heavy-light hybrids to B(D) and pion are calculated by using the QCD sum rules. The interpolated current of the hybrid is chosen as gqˉγαGαμaTahv(x)g\bar q\gamma_{\alpha}G_{\alpha\mu}^aT^ah_{\it v}(x). In order to simplify the calculation and avoid the ambiguity of three-point correlation function, a two-point correlation function between the pion and vacuum is used instead. The decay width of the 0++→B(D)0^{++}\to B(D) is about 12(16) MeV while the 1−+→B(D)1^{-+}\to B(D) is around 0.4(1.8) MeV. We keep the leading order of 1/M_Q expansion in our calculation for convenience.Comment: 14 pages, latex file, 4 ps figs, Published version, some numerical results change
    • …
    corecore