1,750 research outputs found

    Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography (EIT)

    Get PDF
    OBJECTIVE: The main objective of this study was to investigate which injection pattern led to the best imaging of fascicular compound activity in fast neural EIT of peripheral nerve using an external cylindrical 2x14-electrodes cuff. Specifically, the study addressed the identification of the optimal injection pattern and of the optimal region of the reconstructed volume to image fascicles. APPROACH: The effect of three different measurement protocol features (transversal/longitudinal injection, drive electrode spacing, referencing configuration) over imaging was investigated in simulation with the use of realistic impedance changes and noise levels. Image-based metrics were employed to evaluate the quality of the reconstructions over the reconstruction domain. The optimal electrode addressing protocol suggested by the simulations was validated in vivo on the tibial and peroneal fascicles of rat sciatic peripheral nerves (N=3) against MicroCT reference images. MAIN RESULTS: Injecting current transversally, with spacing of ≥4 electrodes apart (≥100°) and single-ring referencing of measurements, led to the best overall localization when reconstructing on the edge of the electrode array closest to the reference. Longitudinal injection protocols led to a higher SNR of the reconstructed image but poorer localization. All in vivo EIT recordings had statistically significant impedance variations (p<0.05). Overall, fascicle center-of-mass (CoM) localization error was estimated at 141±56µm (-26±94µm and 5±29° in radial coordinates). Significant difference was found (p<0.05) between mean angular location of the tibial and peroneal CoMs. SIGNIFICANCE: This study gives the reader recommendations for performing fast neural EIT of fascicular compound activity using the most effective protocol features

    Adjunct primer for the use of national comprehensive cancer network guidelines for the surgical management of cutaneous malignant melanoma patients

    Get PDF
    Recently, a Surveillance Epidemiology and End Results (SEER) survey of melanoma patterns of care by the Mayo Clinic, Scottsdale showed remarkable deviations from best practice patterns throughout the country. The study, which analyzed the SEER records of 35,126 stage I to III cutaneous malignant melanoma patients treated from 2004 to 2006, showed that adherence to National Comprehensive Cancer Network (NCCN) therapeutic resection margins occurred in less than 36% of patients. Similarly, considerable variation in the quality of melanoma care in the United States when assessed using 26 quality indicators drawn by a panel of melanoma experts was independently reported. These observations underscore the significant lack of adherence to published best practice patterns reflected by the NCCN guidelines. The untoward effects of these variations in practice pattern can have an inordinate impact on the survival of melanoma patients in whom long term outcomes are affected by the adequacy of surgical management. Thin malignant melanoma is curable; however, thick or node positive melanoma is often incurable. This outcome is determined not only by the stage at presentation but by the use of best practice patterns as reflected in current NCCN cutaneous melanoma practice guidelines

    Solitary splenic metastasis from ovarian carcinosarcoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Metastatic tumors to the spleen are rare but are usually found in conjunction with metastasis to other organs. The most common sources of splenic metastasis are breast, lung and colorectal cancers as well as melanoma and ovarian carcinoma. A solitary carcinosarcoma metastasis to the spleen of any origin is very rare. To the best of our knowledge, there are fewer than 30 reported cases of ovarian primary tumors with solitary metastasis to the spleen, and only three solitary primary carcinosarcomas to the spleen have been reported, of which one is female. We present what is, to the best of our knowledge, the first case of a solitary metastatic carcinosarcoma to the spleen arising from a primary ovarian carcinsarcoma.</p> <p>Case presentation</p> <p>A 72-year-old Hispanic woman status post-total abdominal hysterectomy for ovarian carcinosarcoma presented with complaints of early satiety and abdominal pain for the past two months with a 30-lb unintentional weight loss. An initial computed tomographic scan of her abdomen and pelvis revealed a 30 cm × 27 cm splenic mass with displacement of the left kidney, stomach and liver. The patient was found to have a solitary metastatic carcinosarcoma of the spleen with biphasic epithelial (carcinomatous) and mesenchymal (sarcomatous) elements consistent with carcinosarcoma.</p> <p>Conclusion</p> <p>Carcinosarcoma of the spleen is a rare tumor. Carcinosarcomas are a biphasic neoplasm comprising malignant epithelial and mesenchymal components arising from a stem cell capable of differentiation. They can arise anywhere in the female genital tract, most commonly from the endometrium. Even though it is rare, carcinosarcomas can metastasize to the spleen. This unique case of a solitary splenic metastasis from ovarian carcinosarcoma has particular interest in medicine, especially for the specialties of surgical oncology, pathology and hematology/oncology.</p

    A Generalized Model of the Effects of Microstructure on Ultrasonic Backscattering and Flaw Detection

    Full text link
    The influence of microstructure on ultrasonic inspection is well known. Familiar examples include the attenuation of ultrasound due to scattering from grain boundaries and the anisotropies in velocity that are associated with preferred grain orientation. Less commonly discussed are the creation of backscattered noise, which can mask flaw signals, and the modification of transducer radiation patterns, e.g. the modulation of the phase fronts in a beam, which can cause fluctuations in signals reflected from surfaces [1]. The latter influence the measurement of attenuation as well as the strength of signals reflected from flaws. The goal of this work is to develop a unified basis for understanding these phenomena, as can be used in the analysis of the performance of ultrasonic flaw detection systems. Of interest are correlations of noise in time as well as the variance of noise signals (about their mean of zero) and reflected signals (about a non-zero mean).</p

    Analysis of Dense Gas Effects in Compressible Turbulent Channel Flows

    Get PDF
    In this work we investigate the influence of dense gas effects on compressible wall-bounded turbulence. Turbulent flows of dense gases represent a research field of great importance for a wide range of applications in engineering. Dense gases are single-phase fluids with a molecular complexity such that the fundamental derivative of gas dynamics [1], which measures the rate of change of the sound speed in isentropic transformations, is less than one in a range of thermodynamic conditions close to the saturation curve. In such conditions, the speed of sound increases in isentropic expansions and decreases in isentropic compressions, unlike the case of perfect gases. For dense gases, the perfect gas model is no longer valid, and more complex equations of state must be used to account for their peculiar thermodynamic behavior. Moreover, in the dense gas regime, the dynamic viscosity μ and the thermal conductivity λ depend on temperature and pressure through complex relationships. Similarly, the approximation of nearly constant Prandtl number Pr= μ c p / λ is no longer valid. Numerical simulations of turbulent dense gas flows of engineering interest are based on the (Reynolds-Averaged Navier–Stokes) RANS equations, which need to be supplemented by a model for the Reynolds stress tensor and turbulent heat flux. The accuracy of RANS models for dense-gas flows has not been properly assessed up to date, due to the lack of both experimental and numerical reference data. DNS databases [2, 3] are then needed to quantify the deficiencies of existing turbulence models and to develop and calibrate improved ones. In this work we first summarize some recent direct numerical simulation (DNS) results [4] for supersonic turbulent channel flows (TCF) of PP11, a heavy fluorocarbon representative of dense gases, at various bulk Mach and Reynolds numbers. The most relevant effects are represented by non-conventional variations of the fluctuating thermodynamic quantities, compared to perfect gases and a strong decoupling between thermal and dynamic effects almost everywhere in the flow, except in the immediate vicinity of the solid wall. Preliminary considerations about the validity of some currently-used models for the turbulent stresses and heat flux are carried out based on a priori comparisons between the exact terms computed from the DNS and their modeled counterparts

    Diet and ovarian cancer risk: a case–control study in China

    Get PDF
    This case–control study, conducted in Zhejiang, China during 1999–2000, investigated whether dietary factors have an aetiological association with ovarian cancer. Cases were 254 patients with histologically confirmed epithelial ovary cancer. The 652 controls comprised 340 hospital visitors, 261 non-neoplasm hospital outpatients without long-term diet modifications and 51 women recruited from the community. A validated food frequency questionnaire was used to measure the habitual diet of cases and controls. The risks of ovarian cancer for the dietary factors were assessed by adjusted odds ratios based on multivariate logistic regression analysis, accounting for potential confounding demographic, lifestyle, familial factors and hormonal status, family ovarian cancer history and total energy intake. The ovarian cancer risk declined with increasing consumption of vegetables and fruits but vice versa with high intakes of animal fat and salted vegetables. The adjusted upper quartile odds ratio compared to the lower quartile was 0.24 (0.1–0.5) for vegetables, 0.36 (0.2–0.7) for fruits, 4.6 (2.2–9.3) for animal fat and 3.4 (2.0–5.8) for preserved (salted) vegetables with significant dose-response relationship. The risk of ovarian cancer also appeared to increase for those women preferring fat, fried, cured and smoked food

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Observation of an Exotic S=+1S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    Full text link
    In an exclusive measurement of the reaction γdK+Kpn\gamma d \to K^+ K^- p n, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1S=+1 is seen in the K+nK^+n invariant mass spectrum. The peak is at 1.542±0.0051.542\pm 0.005 GeV/c2^2 with a measured width of 0.021 GeV/c2^2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is 5.2±0.6σ5.2 \pm 0.6 \sigma. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1S=+1 baryon by other experimental groups.Comment: 5 pages, 5 figure

    Measurement of Beam-Spin Asymmetries for Deep Inelastic π+\pi^+ Electroproduction

    Full text link
    We report the first evidence for a non-zero beam-spin azimuthal asymmetry in the electroproduction of positive pions in the deep-inelastic region. Data have been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of the sinϕ\sin\phi modulation increases with the momentum of the pion relative to the virtual photon, zz, with an average amplitude of 0.038±0.005±0.0030.038 \pm 0.005 \pm 0.003 for 0.5<z<0.80.5 < z < 0.8 range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
    corecore