3 research outputs found
Radiation-pressure self-cooling of a micromirror in a cryogenic environment
We demonstrate radiation-pressure cavity-cooling of a mechanical mode of a
micromirror starting from cryogenic temperatures. To achieve that, a
high-finesse Fabry-Perot cavity (F\approx 2200) was actively stabilized inside
a continuous-flow 4He cryostat. We observed optical cooling of the fundamental
mode of a 50mu x 50 mu x 5.4 mu singly-clamped micromirror at \omega_m=3.5 MHz
from 35 K to approx. 290 mK. This corresponds to a thermal occupation factor of
\approx 1x10^4. The cooling performance is only limited by the mechanical
quality and by the optical finesse of the system. Heating effects, e.g. due to
absorption of photons in the micromirror, could not be observed. These results
represent a next step towards cavity-cooling a mechanical oscillator into its
quantum ground state
Cavity cooling of a nanomechanical resonator by light scattering
We present a novel method for opto-mechanical cooling of sub-wavelength sized
nanomechanical resonators. Our scheme uses a high finesse Fabry-Perot cavity of
small mode volume, within which the nanoresonator is acting as a
position-dependant perturbation by scattering. In return, the back-action
induced by the cavity affects the nanoresonator dynamics and can cool its
fluctuations. We investigate such cavity cooling by scattering for a nanorod
structure and predict that ground-state cooling is within reach.Comment: 4 pages, 3 figure