4,189 research outputs found
Fluent dreaming for language models
Feature visualization, also known as "dreaming", offers insights into vision
models by optimizing the inputs to maximize a neuron's activation or other
internal component. However, dreaming has not been successfully applied to
language models because the input space is discrete. We extend Greedy
Coordinate Gradient, a method from the language model adversarial attack
literature, to design the Evolutionary Prompt Optimization (EPO) algorithm. EPO
optimizes the input prompt to simultaneously maximize the Pareto frontier
between a chosen internal feature and prompt fluency, enabling fluent dreaming
for language models. We demonstrate dreaming with neurons, output logits and
arbitrary directions in activation space. We measure the fluency of the
resulting prompts and compare language model dreaming with max-activating
dataset examples. Critically, fluent dreaming allows automatically exploring
the behavior of model internals in reaction to mildly out-of-distribution
prompts. Code for running EPO is available at
https://github.com/Confirm-Solutions/dreamy. A companion page demonstrating
code usage is at https://confirmlabs.org/posts/dreamy.htmlComment: 11 pages, 6 figures, 4 table
Integrable Deformations from Twistor Space
Integrable field theories in two dimensions are known to originate as defect
theories of 4d Chern-Simons and as symmetry reductions of the 4d anti-self-dual
Yang-Mills equations. Based on ideas of Costello, it has been proposed in work
of Bittleston and Skinner that these two approaches can be unified starting
from holomorphic Chern-Simons in 6 dimensions. We provide the first complete
description of this diamond of integrable theories for a family of deformed
sigma models, going beyond the Dirichlet boundary conditions that have been
considered thus far. Starting from 6d holomorphic Chern-Simons theory on
twistor space with a particular meromorphic 3-form , we construct the
defect theory to find a novel 4d integrable field theory, whose equations of
motion can be recast as the 4d anti-self-dual Yang-Mills equations. Symmetry
reducing, we find a multi-parameter 2d integrable model, which specialises to
the -deformation at a certain point in parameter space. The same model
is recovered by first symmetry reducing, to give 4d Chern-Simons with
generalised boundary conditions, and then constructing the defect theory.Comment: 38 pages, 1 figur
Spectrum of non-Hermitian heavy tailed random matrices
Let (X_{jk})_{j,k>=1} be i.i.d. complex random variables such that |X_{jk}|
is in the domain of attraction of an alpha-stable law, with 0< alpha <2. Our
main result is a heavy tailed counterpart of Girko's circular law. Namely,
under some additional smoothness assumptions on the law of X_{jk}, we prove
that there exists a deterministic sequence a_n ~ n^{1/alpha} and a probability
measure mu_alpha on C depending only on alpha such that with probability one,
the empirical distribution of the eigenvalues of the rescaled matrix a_n^{-1}
(X_{jk})_{1<=j,k<=n} converges weakly to mu_alpha as n tends to infinity. Our
approach combines Aldous & Steele's objective method with Girko's Hermitization
using logarithmic potentials. The underlying limiting object is defined on a
bipartized version of Aldous' Poisson Weighted Infinite Tree. Recursive
relations on the tree provide some properties of mu_alpha. In contrast with the
Hermitian case, we find that mu_alpha is not heavy tailed.Comment: Expanded version of a paper published in Communications in
Mathematical Physics 307, 513-560 (2011
Borderline Aggregation Kinetics in ``Dry'' and ``Wet'' Environments
We investigate the kinetics of constant-kernel aggregation which is augmented
by either: (a) evaporation of monomers from finite-mass clusters, or (b)
continuous cluster growth -- \ie, condensation. The rate equations for these
two processes are analyzed using both exact and asymptotic methods. In
aggregation-evaporation, if the evaporation is mass conserving, \ie, the
monomers which evaporate remain in the system and continue to be reactive, the
competition between evaporation and aggregation leads to several asymptotic
outcomes. For weak evaporation, the kinetics is similar to that of aggregation
with no evaporation, while equilibrium is quickly reached in the opposite case.
At a critical evaporation rate, the cluster mass distribution decays as
, where is the mass, while the typical cluster mass grows with
time as . In aggregation-condensation, we consider the process with a
growth rate for clusters of mass , , which is: (i) independent of ,
(ii) proportional to , and (iii) proportional to , with . In
the first case, the mass distribution attains a conventional scaling form, but
with the typical cluster mass growing as . When , the
typical mass grows exponentially in time, while the mass distribution again
scales. In the intermediate case of , scaling generally
applies, with the typical mass growing as . We also give an
exact solution for the linear growth model, , in one dimension.Comment: plain TeX, 17 pages, no figures, macro file prepende
Morphological Instabilities in a growing Yeast Colony: Experiment and Theory
We study the growth of colonies of the yeast Pichia membranaefaciens on
agarose film. The growth conditions are controlled in a setup where nutrients
are supplied through an agarose film suspended over a solution of nutrients. As
the thickness of the agarose film is varied, the morphology of the front of the
colony changes. The growth of the front is modeled by coupling it to a
diffusive field of inhibitory metabolites. Qualitative agreement with
experiments suggests that such a coupling is responsible for the observed
instability of the front.Comment: RevTex, 4 pages and 3 figure
Curve crossing in linear potential grids: the quasidegeneracy approximation
The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S.
Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to
evaluate transition amplitudes for the problem of curve crossing in linear
potential grids involving two sets of parallel potentials. The approximation
describes phenomena, such as counterintuitive transitions and saturation
(incomplete population transfer), not predictable by the assumption of
independent crossings. Also, a new kind of oscillations due to quantum
interference (different from the well-known St\"uckelberg oscillations) is
disclosed, and its nature discussed. The approximation can find applications in
many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig,
submitted to Physical Review
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Seismic moment tensor and b value variations over successive seismic cycles in laboratory stick-slip experiments
The formation of fault damage due to slip under high normal stresses can rarely be monitored under in situ conditions. To advance our understanding of microfracture processes, we investigated stick-slip events on Westerly granite samples containing the following: (1) a planar saw cut fault and (2) a fault developed from a fresh fracture surface. We examined temporal changes of seismic moment tensors and b values of acoustic emission (AE) events. During experiment on the saw cut surface, small AEs exhibiting non-double-couple components were observed continuously and strong AEs displaying double-couple components were visible only when approaching the slip onsets. Sliding on naturally fractured surfaces showed, in addition to double-couple components, significant volumetric contributions, especially during the interslip periods and immediately after stick-slip events indicating substantial shear-enhanced compaction within a relatively broad damage zone. The obtained results shed light on how differences in fault structure control the kinematics of microseismicity during different periods of the seismic cycle
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
- …