3,721 research outputs found

    GGD 27: X-rays from a Massive Protostar with an Outflow

    Get PDF
    We report the discovery of a cluster of Class I protostars in GGD 27. One of these protostars is the previously known, centrally located, GGD 27-ILL, which powers a massive bipolar outflow. We show that GGD 27-ILL, which is known to be the bright infrared (IR) source, IRAS 18162-2048, and a compact radio continuum source, is also the newly discovered hard X-ray source, GGD 27-X. The observations were made with the ACIS instrument on the Chandra X-ray Observatory. The X-rays from GGD 27-X are variable when compared with 4 years earlier, with an unabsorbed 2-10 keV X-ray luminosity in this observation of 1.5-12 × 10^31 erg s^–1 and a plasma temperature of ≥ 10^7 K. The X-rays are probably associated with the underlying B0 star (rather than outflowing material), providing a rare glimpse in hard X-rays of an optically obscured massive protostar with an outflow. The X-ray luminosity and spectrum appear to be consistent with stars of its type in other star formation regions. Several other variable X-ray sources are also detected in the IR cluster that contains GGD 27-X. We also discuss another nearby cluster. In each of the clusters there is an object that is X-ray hard, highly absorbed at low energies, in a blank optical/IR/radio field, and variable in X-ray intensity by a factor of ≥ 10 on a timescale of 4 years. These latter objects may arise from more recent episodes of star formation or may be "hidden" Class III sources

    The Carnegie Astrometric Planet Search Program

    Full text link
    We are undertaking an astrometric search for gas giant planets and brown dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We have built two specialized astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras' design having been optimized for high accuracy astrometry of M dwarf stars. We describe two independent CAPSCam data reduction approaches and present a detailed analysis of the observations to date of one of our target stars, NLTT 48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply that astrometric accuracies of around 0.3 milliarcsec per hour are achievable, sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf 10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100 nearby (primarily within about 10 pc) low mass stars, principally late M, L, and T dwarfs, for 10 years or more, in order to detect very low mass companions with orbital periods long enough to permit the existence of habitable, Earth-like planets on shorter-period orbits. These stars are generally too faint and red to be included in ground-based Doppler planet surveys, which are often optimized for FGK dwarfs. The smaller masses of late M dwarfs also yield correspondingly larger astrometric signals for a given mass planet. Our search will help to determine whether gas giant planets form primarily by core accretion or by disk instability around late M dwarf stars.Comment: 48 pages, 9 figures. in press, Publ. Astron. Soc. Pacifi

    Iron-mediated organic matter decomposition in humid soils can counteract protection

    Get PDF
    Soil organic matter (SOM) is correlated with reactive iron (Fe) in humid soils, but Fe also promotes SOM decomposition when oxygen (O2) becomes limited. Here we quantify Fe-mediated OM protection vs. decomposition by adding 13C dissolved organic matter (DOM) and 57FeII to soil slurries incubated under static or fluctuating O2. We find Fe uniformly protects OM only under static oxic conditions, and only when Fe and DOM are added together: de novo reactive FeIII phases suppress DOM and SOM mineralization by 35 and 47%, respectively. Conversely, adding 57FeII alone increases SOM mineralization by 8% following oxidation to 57FeIII. Under O2 limitation, de novo reactive 57FeIII phases are preferentially reduced, increasing anaerobic mineralization of DOM and SOM by 74% and 32‒41%, respectively. Periodic O2 limitation is common in humid soils, so Fe does not intrinsically protect OM; rather reactive Fe phases require their own physiochemical protection to contribute to OM persistence
    corecore