348 research outputs found

    The Role of Hemodynamic Support in High-risk Percutaneous Coronary Intervention

    Get PDF
    Patients with advanced age, complex coronary anatomy, and multiple comorbidities are often unsuitable for surgical revascularization. In this setting, hemodynamic support devices are used as an adjunct to percutaneous coronary intervention to maintain hemodynamic stability and enable optimal revascularization. This article provides an overview of percutaneous hemodynamic support devices currently used in clinical practice for high-risk percutaneous coronary intervention. These include the intra-aortic balloon pump, centrifugal pumps (TandemHeart, venous arterial extracorporeal membrane oxygenation), and micro-axial Impella pump. The hemodynamic effects, clinical evidence supporting improved outcomes and recovery of heart function, and associated complications with these devices are highlighted, with a special focus on Impella pumps

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Rapid climate-driven circulation changes threaten conservation of endangered north atlantic right whales

    Get PDF
    As climate trends accelerate, ecosystems will be pushed rapidly into new states, reducing the potential efficacy of conservation strategies based on historical patterns. In the Gulf of Maine, climate-driven changes have restructured the ecosystem rapidly over the past decade. Changes in the Atlantic meridional overturning circulation have altered deepwater dynamics, driving warming rates twice as high as the fastest surface rates. This has had implications for the copepod Calanus finmarchicus, a critical food supply for the endangered North Atlantic right whale (Eubalaena glacialis). The oceanographic changes have driven a deviation in the seasonal foraging patterns of E. glacialis upon which conservation strategies depend, making the whales more vulnerable to ship strikes and gear entanglements. The effects of rapid climate-driven changes on a species at risk undermine current management approaches.publishedVersio

    Development and Evaluation of a Palliative Medicine Curriculum for Third-Year Medical Students

    Full text link
    Abstract Objective: To assess the impact, retention, and magnitude of effect of a required didactic and experiential palliative care curriculum on third-year medical students' knowledge, confidence, and concerns about end-of-life care, over time and in comparison to benchmark data from a national study of internal medicine residents and faculty. Design: Prospective study of third-year medical students prior to and immediately after course completion, with a follow-up assessment in the fourth year, and in comparison to benchmark data from a large national study. Setting: Internal Medicine Clerkship in a public accredited medical school. Participants: Five hundred ninety-three third-year medical students, from July 2002 to December 2007. Main outcome measures: Pre- and postinstruction performance on: knowledge, confidence (self-assessed competence), and concerns (attitudes) about end-of-life care measures, validated in a national study of internal medicine residents and faculty. Medical student's reflective written comments were qualitatively assessed. Intervention: Required 32-hour didactic and experiential curriculum, including home hospice visits and inpatient hospice care, with content drawn from the AMA-sponsored Education for Physicians on End-of-life Care (EPEC) Project. Results: Analysis of 487 paired t tests shows significant improvements, with 23% improvement in knowledge (F1,486=881, p<0.001), 56% improvement in self-reported competence (F1,486=2,804, p<0.001), and 29% decrease in self-reported concern (F1,486=208, p<0.001). Retesting medical students in the fourth year showed a further 5% increase in confidence (p<0.0002), 13% increase in allaying concerns (p<0.0001), but a 6% drop in knowledge. The curriculum's effect size on M3 students' knowledge (0.56) exceeded that of a national cross-sectional study comparing residents at progressive training levels (0.18) Themes identified in students' reflective comments included perceived relevance, humanism, and effectiveness of methods used to teach and assess palliative care education. Conclusions: We conclude that required structured didactic and experiential palliative care during the clinical clerkship year of medical student education shows significant and largely sustained effects indicating students are better prepared than a national sample of residents and attending physicians.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98455/1/jpm%2E2010%2E0502.pd

    CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    Get PDF
    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation

    biOrigami: A New Approach to Reduce the Cost of Space Missions

    Get PDF
    Space exploration lies at the inquisitive core of human nature, yet high costs hinder the advancement of this frontier. We are harnessing the replicative properties of biology to create biOrigamibiological, self-folding origamito reduce the mass, volume, and assembly time of materials needed for space missions. biOrigami consists of two main components: manufacturing substrates biologically and bioengineering folding mechanisms. For substrates, we are developing new BioBricks to synthesize two thermoplastics: polystyrene and polyhydroxyalkanoates. For folding mechanisms, we are using heat-induced contraction of thermoplastics and the contractile properties of bacterial spores. After consulting with experts, we believe that biOrigami could be incorporated into rovers, solar sails, and more. In addition to biOrigami, we are creating a novel method to efficiently transform bacteria by using the CRISPRCas9 system, benefitting the broader synthetic biology community. Our project integrates and improves manufacturing processes for space exploration on both the micro and macro levels

    Fluorescent Risedronate Analogues Reveal Bisphosphonate Uptake by Bone Marrow Monocytes and Localization Around Osteocytes In Vivo

    Get PDF
    Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647–labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14high bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14+ cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo. © 2010 American Society for Bone and Mineral Researc

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore