4 research outputs found

    Characterization of the anti-DnaJ monoclonal antibodies and their use to compare immunological properties of DnaJ and its human homologue HDJ-1

    Full text link
    Escherichia coli DnaJ (Hsp40) is suspected to participate in rheumatoid arthritis (RA) pathogenesis in humans by an autoimmune process. In this work a set of 6 anti-DnaJ monoclonal antibodies (mAbs) was raised and localization of the epitopes recognized by the mAbs was investigated. Western blotting and enzyme-linked immunosorbent assay (ELISA) experiments showed that the mAbs efficiently bound only native antigen. Using DnaJ mutant proteins with deletions of specified domains and ELISA, we found that AC11 mAb reacted with the best conserved in evolution N-terminal J domain, whereas BB3, EE11, CC5, CC8, and DC7 bound to the C-terminal part after residue 200. Mapping performed with the use of a random peptide library displayed by filamentous phage indicated that (1) AC11 mAb bound to a region between residues 33–48, including D-34 which belongs to the HPD triad, present in all DnaJ homologues, (2) BB3 recognized residues localized in the 204–224 region, (3) EE11 recognized the 291–309 region, (4) CC5—the region 326–359, and (5) CC8—the 346–366 region. All these mAbs, as well as the polyclonal antibodies against the N- or C-terminal domain, bound efficiently to HDJ-1, human Hsp40. These results show the presence of a significant immunological similarity between bacterial DnaJ and human HDJ-1, which is not restricted to the evolutionarily conserved parts of the proteins, and suggest that HDJ-1 could be a possible target of immune response triggered by DnaJ

    Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP).

    Full text link
    Fundamental cellular processes including angiogenesis and cell migration require a proteolytic cascade driven by interactions of membrane-type matrix metalloproteinase 1 (MT1-MMP) and progelatinase A (proMMP-2) that are dependent on the presence of tissue inhibitor of metalloproteinases 2 (TIMP-2). There are unique interactions between TIMP-2 and MT1-MMP, which we have previously defined, and here we identify TIMP-2 sequence motifs specific for proMMP-2 binding in the context of its activation by MT1-MMP. A TIMP-2 mutant encoding the C-terminal domain of TIMP-4 showed loss of proMMP-2 activation, indicating that the C-terminal domain of TIMP-2 is important in establishing the trimolecular complex between MT1-MMP, TIMP-2 and proMMP-2. This was confirmed by analysis of a TIMP-4 mutant encoding the C-terminal domain of TIMP-2, which formed a trimolecular complex and promoted proMMP-2 processing to the intermediate form. Mutants encoding TIMP-4 from Cys(1) to Leu(185) and partial tail sequence of TIMP-2 showed some gain of activating capability relative to TIMP-4. The identified residues were subsequently mutated in TIMP-2 (E(192)-D(193) to I(192)-Q(193)) and this inhibitor showed a significantly reduced ability to facilitate proMMP-2 processing by MT1-MMP. Furthermore, the tail-deletion mutant Delta(186-194)TIMP-2 was completely incapable of promoting proMMP-2 activation by MT1-MMP. Thus the C-terminal tail residues of TIMP-2 are important determinants for stable trimolecular complex formation between TIMP-2, proMMP-2 and MT1-MMP and play an important role in MT1-MMP-mediated processing to the intermediate and final active forms of MMP-2 at the cell surface
    corecore