110 research outputs found
Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis.
Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis
Inhibition of Cholesterol Biosynthesis Through RNF145-Dependent Ubiquitination of SCAP
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways
Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation
SummaryCirculating trimethylamine-N-oxide (TMAO) levels are strongly associated with atherosclerosis. We now examine genetic, dietary, and hormonal factors regulating TMAO levels. We demonstrate that two flavin mono-oxygenase family members, FMO1 and FMO3, oxidize trimethylamine (TMA), derived from gut flora metabolism of choline, to TMAO. Further, we show that FMO3 exhibits 10-fold higher specific activity than FMO1. FMO3 overexpression in mice significantly increases plasma TMAO levels while silencing FMO3 decreases TMAO levels. In both humans and mice, hepatic FMO3 expression is reduced in males compared to females. In mice, this reduction in FMO3 expression is due primarily to downregulation by androgens. FMO3 expression is induced by dietary bile acids by a mechanism that involves the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor. Analysis of natural genetic variation among inbred strains of mice indicates that FMO3 and TMAO are significantly correlated, and TMAO levels explain 11% of the variation in atherosclerosis
The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits
The Hybrid Mouse Diversity Panel (HMDP) is a collection of approximately 100 well-characterized inbred strains of mice that can be used to analyze the genetic and environmental factors underlying complex traits. While not nearly as powerful for mapping genetic loci contributing to the traits as human genome-wide association studies, it has some important advantages. First, environmental factors can be controlled. Second, relevant tissues are accessible for global molecular phenotyping. Finally, because inbred strains are renewable, results from separate studies can be integrated. Thus far, the HMDP has been studied for traits relevant to obesity, diabetes, atherosclerosis, osteoporosis, heart failure, immune regulation, fatty liver disease, and host-gut microbiota interactions. High-throughput technologies have been used to examine the genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes of the mice under various environmental conditions. All of the published data are available and can be readily used to formulate hypotheses about genes, pathways and interactions
Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis
Contacts between organelles create microdomains that play major roles in regulating key intracellular activities and signaling pathways, but whether they also regulate systemic functions remains unknown. Here, we report the ultrastructural organization and dynamics of the inter-organellar contact established by sheets of curved rough endoplasmic reticulum closely wrapped around the mitochondria (wrappER). To elucidate the in vivo function of this contact, mouse liver fractions enriched in wrappER-associated mitochondria are analyzed by transcriptomics, proteomics, and lipidomics. The biochemical signature of the wrappER points to a role in the biogenesis of very-low-density lipoproteins (VLDL). Altering wrappER-mitochondria contacts curtails VLDL secretion and increases hepatic fatty acids, lipid droplets, and neutral lipid content. Conversely, acute liver-specific ablation of Mttp, the most upstream regulator of VLDL biogenesis, recapitulates this hepatic dyslipidemia phenotype and promotes remodeling of the wrappER-mitochondria contact. The discovery that liver wrappER-mitochondria contacts participate in VLDL biology suggests an involvement of inter-organelle contacts in systemic lipid homeostasis.Fil: Anastasia, Irene. Laval University; Canadá. Brain Research Center; CanadáFil: Ilacqua, Nicolò. Laval University; Canadá. Brain Research Center; CanadáFil: Raimondi, Andrea. San Raffaele Scientific Institute; ItaliaFil: Lemieux, Philippe. Brain Research Center; CanadáFil: Ghandehari-Alavijeh, Rana. Brain Research Center; CanadáFil: Faure, Guilhem. Broad Institute of MIT and Harvard; Estados Unidos. National Center For Biotechnology Information; Estados UnidosFil: Mekhedov, Sergei L.. National Center For Biotechnology Information ; Estados UnidosFil: Williams, Kevin J.. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Caicci, Federico. UniversitĂ di Padova; ItaliaFil: Valle, Giorgio. UniversitĂ di Padova; ItaliaFil: Giacomello, Marta. UniversitĂ di Padova; ItaliaFil: Quiroga, Ariel Dario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de FisiologĂa Experimental. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de FisiologĂa Experimental; Argentina. University of Alberta; CanadáFil: Lehner, Richard. University of Alberta; CanadáFil: Miksis, Michael J.. Northwestern University; Estados UnidosFil: Toth, Katalin. University of Ottawa; CanadáFil: de Aguiar Vallim, Thomas Q.. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Koonin, Eugene V.. National Center For Biotechnology Information ; Estados UnidosFil: Scorrano, Luca. UniversitĂ di Padova; ItaliaFil: Pellegrini, Luca. Laval University; Canad
Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans
Bile acids are synthesized from cholesterol in the liver and subjected to multiple metabolic biotransformations in hepatocytes, including oxidation by cytochromes P450 (CYPs) and conjugation with taurine, glycine, glucuronic acid, and sulfate. Mice and rats can hydroxylate chenodeoxycholic acid (CDCA) at the 6β-position to form α-muricholic acid (MCA) and ursodeoxycholic acid (UDCA) to form β-MCA. However, MCA is not formed in humans to any appreciable degree and the mechanism for this species difference is not known. Comparison of several Cyp-null mouse lines revealed that α-MCA and β-MCA were not detected in the liver samples from Cyp2c-cluster null (Cyp2c-null) mice. Global bile acid analysis further revealed the absence of MCAs and their conjugated derivatives, and high concentrations of CDCA and UDCA in Cyp2c-null mouse cecum and feces. Analysis of recombinant CYPs revealed that α-MCA and β-MCA were produced by oxidation of CDCA and UDCA by Cyp2c70, respectively. CYP2C9-humanized mice have similar bile acid metabolites as the Cyp2c-null mice, indicating that human CYP2C9 does not oxidize CDCA and UDCA, thus explaining the species differences in production of MCA. Because humans do not produce MCA, they lack tauro-β-MCA, a farnesoid X receptor antagonist in mouse that modulates obesity, insulin resistance, and hepatosteatosis
FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids
Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis
We performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin. FMO3 overexpression in transgenic mice, on the other hand, increased hepatic and plasma lipids. Global gene expression analyses suggested that these effects of FMO3 on lipogenesis and gluconeogenesis may be mediated through the PPARα and Kruppel-like factor 15 pathways. In vivo and in vitro results were consistent with the concept that the effects were mediated directly by FMO3 rather than trimethylamine/TMAO; in particular, overexpression of FMO3 in the human hepatoma cell line, Hep3B, resulted in significantly increased glucose secretion and lipogenesis. Our results indicate a major role for FMO3 in modulating glucose and lipid homeostasis in vivo, and they suggest that pharmacologic inhibition of FMO3 to reduce TMAO levels would be confounded by metabolic interactions
A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease
A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease
- …