101 research outputs found

    Supersymmetric Field Theories on Three-Manifolds

    Full text link
    We construct supersymmetric field theories on Riemannian three-manifolds M, focusing on N=2 theories with a U(1)_R symmetry. Our approach is based on the rigid limit of new minimal supergravity in three dimensions, which couples to the flat-space supermultiplet containing the R-current and the energy-momentum tensor. The field theory on M possesses a single supercharge, if and only if M admits an almost contact metric structure that satisfies a certain integrability condition. This may lead to global restrictions on M, even though we can always construct one supercharge on any given patch. We also analyze the conditions for the presence of additional supercharges. In particular, two supercharges of opposite R-charge exist on every Seifert manifold. We present general supersymmetric Lagrangians on M and discuss their flat-space limit, which can be analyzed using the R-current supermultiplet. As an application, we show how the flat-space two-point function of the energy-momentum tensor in N=2 superconformal theories can be calculated using localization on a squashed sphere.Comment: 53 pages; minor change

    From Rigid Supersymmetry to Twisted Holomorphic Theories

    Full text link
    We study N=1 field theories with a U(1)_R symmetry on compact four-manifolds M. Supersymmetry requires M to be a complex manifold. The supersymmetric theory on M can be described in terms of conventional fields coupled to background supergravity, or in terms of twisted fields adapted to the complex geometry of M. Many properties of the theory that are difficult to see in one formulation are simpler in the other one. We use the twisted description to study the dependence of the partition function Z_M on the geometry of M, as well as coupling constants and background gauge fields, recovering and extending previous results. We also indicate how to generalize our analysis to three-dimensional N=2 theories with a U(1)_R symmetry. In this case supersymmetry requires M to carry a transversely holomorphic foliation, which endows it with a near-perfect analogue of complex geometry. Finally, we present new explicit formulas for the dependence of Z_M on the choice of U(1)_R symmetry in four and three dimensions, and illustrate them for complex manifolds diffeomorphic to S^3 x S^1, as well as general squashed three-spheres.Comment: 55 pages; minor change
    • …
    corecore