3,477 research outputs found
Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets
Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology
Clathrate hydrates as a sink of noble gases in Titan's atmosphere
We use a statistical thermodynamic approach to determine the composition of
clathrate hydrates which may form from a multiple compound gas whose
composition is similar to that of Titan's atmosphere. Assuming that noble gases
are initially present in this gas phase, we calculate the ratios of xenon,
krypton and argon to species trapped in clathrate hydrates. We find that these
ratios calculated for xenon and krypton are several orders of magnitude higher
than in the coexisting gas at temperature and pressure conditions close to
those of Titan's present atmosphere at ground level. Furthermore we show that,
by contrast, argon is poorly trapped in these ices. This trapping mechanism
implies that the gas-phase is progressively depleted in xenon and krypton when
the coexisting clathrate hydrates form whereas the initial abundance of argon
remains almost constant. Our results are thus compatible with the deficiency of
Titan's atmosphere in xenon and krypton measured by the {\it Huygens} probe
during its descent on January 14, 2005. However, in order to interpret the
subsolar abundance of primordial Ar also revealed by {\it Huygens}, other
processes that occurred either during the formation of Titan or during its
evolution must be also invoked.Comment: Astronomy & Astrophysics Letters, in pres
- …