2 research outputs found

    Time-series hyperpolarized xenon-129 MRI of lobar lung ventilation of COPD in comparison to V/Q-SPECT/CT and CT

    Get PDF
    Purpose To derive lobar ventilation in patients with chronic obstructive pulmonary disease (COPD) using a rapid time-series hyperpolarized xenon-129 (HPX) magnetic resonance imaging (MRI) technique and compare this to ventilation/perfusion singlephoton emission computed tomography (V/Q-SPECT), correlating the results with high-resolution computed tomography (CT) and pulmonary function tests (PFTs).Materials and methods Twelve COPD subjects (GOLD stages Iā€“IV) participated in this study and underwent HPX-MRI, V/QSPECT/CT, high-resolution CT, and PFTs. HPX-MRI was performed using a novel time-series spiral k-space sampling approach. Relative percentage ventilations were calculated for individual lobe for comparison to the relative SPECT lobar ventilation and perfusion. The absolute HPX-MRI percentage ventilation in each lobe was compared to the absolute CT percentage emphysema score calculated using a signal threshold method. Pearsonā€™s correlation and linear regression tests were performed to compare each imaging modality.Results Strong correlations were found between the relative lobar percentage ventilation with HPX-MRI and percentage ventilation SPECT (r = 0.644; p Conclusion Lobar ventilation with HPX-MRI showed a strong correlation with lobar ventilation and perfusion measurements derived from SPECT/CT, and is better than the emphysema score obtained with high-resolution CT.</div

    CT-based airway flow model to assess ventilation in chronic obstructive pulmonary disease: a pilot study

    No full text
    Background The lack of functional information in thoracic CT remains a limitation of its use in the clinical management of chronic obstructive pulmonary disease (COPD). Purpose To compare the distribution of pulmonary ventilation assessed by a CT-based full-scale airway network (FAN) flow model with hyperpolarized xenon 129 (129Xe) MRI (hereafter, 129Xe MRI) and technetium 99m-diethylenetriaminepentaacetic acid aerosol SPECT ventilation imaging (hereafter, V-SPECT) in participants with COPD. Materials and Methods In this prospective study performed between May and August 2017, pulmonary ventilation in participants with COPD was computed by using the FAN flow model. The modeled pulmonary ventilation was compared with functional imaging data from breath-hold time-series 129Xe MRI and V-SPECT. FAN-derived ventilation images on the coronal plane and volumes of interest were compared with functional lung images. Percentage lobar ventilation estimated by the FAN model was compared with that measured at 129Xe MRI and V-SPECT. The statistical significance of ventilation distribution between FAN and functional images was demonstrated with the Spearman correlation coefficient and Ļ‡2 distance. Results For this study, nine participants (seven men [mean age, 65 years Ā± 5 {standard deviation}] and two women [mean age, 63 years Ā± 7]) with COPD that was Global Initiative for Chronic Obstructive Lung Disease stage II-IV were enrolled. FAN-modeled ventilation profile showed strong positive correlation with images from 129Xe MRI (Ļ = 0.67; P < .001) and V-SPECT (Ļ = 0.65; P < .001). The Ļ‡2 distances of the ventilation histograms in the volumes of interest between the FAN and 129Xe MRI and FAN and V-SPECT were 0.16 Ā± 0.08 and 0.28 Ā± 0.14, respectively. The ratios of lobar ventilations in the models were linearly correlated to images from 129Xe MRI (Ļ = 0.67; P < .001) and V-SPECT (Ļ = 0.59; P < .001). Conclusion A CT-based full-scale airway network flow model provided regional pulmonary ventilation information for chronic obstructive pulmonary disease and correlates with hyperpolarized xenon 129 MRI and technetium 99m-diethylenetriaminepentaacetic acid aerosol SPECT ventilation imaging
    corecore