12 research outputs found
Behavioral Analyses of Sugar Processing in Choice, Feeding, and Learning in Larval Drosophila
Gustatory stimuli have at least 2 kinds of function: They can support immediate, reflexive responses (such as substrate choice and feeding) and they can drive internal reinforcement. We provide behavioral analyses of these functions with respect to sweet taste in larval Drosophila. The idea is to use the doseâeffect characteristics as behavioral âfingerprintsâ to dissociate reflexive and reinforcing functions. For glucose and trehalose, we uncover relatively weak preference. In contrast, for fructose and sucrose, preference responses are strong and the effects on feeding pronounced. Specifically, larvae are attracted to, and feeding is stimulated most strongly for, intermediate concentrations of either sugar: Using very high concentrations (4 M) results in weakened preference and suppression of feeding. In contrast to such an optimum function regarding choice and feeding, an asymptotic doseâeffect function is found for reinforcement learning: Learning scores reach asymptote at 2 M and remain stable for a 4-M concentration. A similar parametric discrepancy between the reflexive (choice and feeding) and reinforcing function is also seen for sodium chloride (Niewalda T, Singhal S, Fiala A, Saumweber T, Wegener S, Gerber B, in preparation). We discuss whether these discrepancies are based either on inhibition from high-osmolarity sensors upon specifically the reflexive pathways or whether different sensory pathways, with different effective doseâresponse characteristics, may have preferential access to drive either reflex responses or modulatory neurons mediating internal reinforcement, respectively
A Combined Perceptual, Physico-Chemical, and Imaging Approach to âOdour-Distancesâ Suggests a Categorizing Function of the Drosophila Antennal Lobe
How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3-octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours
Neurogenetische Analyse von pain-relief Lernen in der Fruchtfliege
All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. Völler and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry.Tiere mĂŒssen lernen, damit sie sich in ihrer Umwelt zurechtfinden und die Herausforderungen meistern können, die ihre Umwelt ihnen bietet. Dies gilt auch fĂŒr Taufliegen im larvalen und erwachsenen Stadium, wie man mit der Pavlovschen Konditionierung zeigen kann. Der Schwerpunkt dieser Doktorarbeit liegt auf verschiedenen Aspekten der LernfĂ€higkeit von Taufliegen. In meinem Hauptprojekt erforsche ich die Arten von Lernprozessen, die stattfinden, wenn die Fliegen entweder den Beginn oder das Ende eines Elektroschocks mit einem Duft assoziieren. Wenn Taufliegen einen Duft wahrnehmen, der von einem Elektroschock gefolgt wird, lernen sie, dass dieser Duft Schmerz signalisiert, und werden ihn konsequenterweise in Zukunft vermeiden. Man kann die Abfolge dieser beiden Reize so umkehren, dass der Duft auf den Elektroschock folgt. Durch ein solches Training wird der Duft fĂŒr die Fliegen zu einem Signal fĂŒr das Ende des schmerzhaften Elektroschocks und sie werden, wenn sie diesen Duft spĂ€ter wieder einmal wahrnehmen, auf ihn zugehen. Ich berichte im ersten Kapitel ĂŒber Experimente, die qualitative und parametrische Besonderheiten der letzteren Lernform untersuchen. Ich finde heraus, dass (i) das Lernen ĂŒber das Ende des Elektroschocks echtes assoziatives Lernen ist, (ii) dass es eine relativ hohe Anzahl von TrainingsdurchgĂ€ngen erfordert, (iii) dass Kontext-Schock-Training unbedeutend fĂŒr anschlieĂendes Schock-Duft-Lernen ist. Im zweiten Kapitel gehe ich der Frage nach, ob die genannten beiden Typen von LernvorgĂ€ngen gemeinsame genetische Determinanten haben. Was die Genetik anbelangt, teste ich die LernfĂ€higkeit eines Synapsin-Mutantenstammes, dem das Synapsinprotein fehlt. Lernen ĂŒber den Beginn des Elektroschocks ist stark reduziert, und Lernen ĂŒber das Ende des Elektroschocks fehlt gĂ€nzlich. Die Reduzierung des Synapsinproteins im Fliegengehirn durch RNAi resultiert in mutantenĂ€hnlichen PhĂ€notypen. Dieser Befund bestĂ€tigt, dass der LernphĂ€notyp auf einem Mangel an Synapsin beruht. Die Expression von Synapsin im Pilzkörper der Mutante erlaubt der Fliege, wieder normal zu lernen; dies weist auf die HinlĂ€nglichkeit von Synapsin im Pilzkörper fĂŒr beide Arten von Lernen hin. In einem weiteren Projekt untersuche ich den Zusammenhang zwischen Wahrnehmung und Physiologie in erwachsenen Taufliegen. Ich benutze Duft-Schock-Konditionierungsexperimente, um basierend auf dem Verhalten der Tiere ĂhnlichkeitsrĂ€nge von DĂŒften zu ermitteln, und finde eine einheitliche Rangfolge der untersuchten DĂŒfte fĂŒr verschiedene Generalisierungs- und Diskriminierungs-Aufgaben von unterschiedlichem Schwierigkeitsgrad. SchlieĂlich erforsche ich in Kooperation mit T. Völler and A. Fiala, wie der Grad der VerhaltensĂ€hnlichkeit /-unĂ€hnlichkeit von DĂŒften mit der Physiologie der Fliege in Beziehung steht. Ich kombiniere die Verhaltensdaten mit Daten, die mittels funktioneller Bildgebung unter Verwendung genetisch codierter Kalziumsensoren erhalten wurden. Diese Methode erlaubt, AktivitĂ€tsmuster, die von den untersuchten DĂŒften verursacht werden, entweder in den sensorischen Neuronen oder in den Projektionsneuronen des Antennallobus zu messen. Unsere Interpretation der Ergebnisse ist, dass die VerhaltensĂ€hnlichkeit der DĂŒfte auf Ebene der Interneuronen im Antennallobus organisiert wird. Weiterhin erforsche ich die Wirkung von Kochsalz (Natriumchlorid) auf das Reflexverhalten und die Rolle von Natriumchlorid als Belohnung oder Bestrafung im Larvenlernen. Larven der Taufliege verĂ€ndern ihr Reflexverhalten in Gegenwart von Natriumchlorid in hohem MaĂe. Larven bevorzugen niedrige Salzkonzentrationen gegenĂŒber einem Substrat ohne Salz; erhöht man die Salzkonzentration jedoch, kehrt sich das Wahlverhalten ins Gegenteil um, bis die Tiere das salzhaltige Substrat stark vermeiden. Ein Ă€hnlicher Zusammenhang zwischen Konzentration und Verhalten wird auch fĂŒr das Fressverhalten gefunden: Larven fressen von einem Substrat mit niedrigen Salzkonzentrationen geringfĂŒgig mehr, von einem Substrat mit hohen Salzkonzentrationen jedoch deutlich weniger als von einem Kontrollsubstrat ganz ohne Salz. Was das Lernen betrifft, wirken relativ schwache Salzkonzentrationen als Belohnung, wĂ€hrend hohe Salzkonzentrationen als Bestrafung wirken. Interessanterweise ist die Verhaltens-Konzentrations-Kurve von Reflexverhalten (Wahlverhalten, Fressverhalten) verglichen mit assoziativem Lernen in Richtung höherer Konzentrationen verschoben. Diese Dissoziation könnte eine verschiedenartige SensitivitĂ€t der Schaltkreise widerspiegeln
âPeer pressureâ in larval Drosophila?
Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on âpeer pressureâ, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila
An optogenetic analogue of second-order reinforcement in Drosophila
In insects, odours are coded by the combinatorial activation of ascending pathways, including their third-order representation in mushroom body Kenyon cells. Kenyon cells also receive intersecting input from ascending and mostly dopaminergic reinforcement pathways. Indeed, in Drosophila, presenting an odour together with activation of the dopaminergic mushroom body input neuron PPL1-01 leads to a weakening of the synapse between Kenyon cells and the approach-promoting mushroom body output neuron MBON-11. As a result of such weakened approach tendencies, flies avoid the shock-predicting odour in a subsequent choice test. Thus, increased activity in PPL1-01 stands for punishment, whereas reduced activity in MBON-11 stands for predicted punishment. Given that punishment-predictors can themselves serve as punishments of second order, we tested whether presenting an odour together with the optogenetic silencing of MBON-11 would lead to learned odour avoidance, and found this to be the case. In turn, the optogenetic activation of MBON-11 together with odour presentation led to learned odour approach. Thus, manipulating activity in MBON-11 can be an analogue of predicted, second-order reinforcement
Memory decay and susceptibility to amnesia dissociate punishment- from relief-learning
Painful events shape future behaviour in two ways: stimuli associated with pain onset subsequently support learned avoidance (i.e. punishment-learning) because they signal future, upcoming pain. Stimuli associated with pain offset in turn signal relief and later on support learned approach (i.e. relief-learning). The relative strengths of such punishment- and relief-learning can be crucial for the adaptive organization of behaviour in the aftermath of painful events. Using Drosophila, we compare punishment- and relief-memories in terms of their temporal decay and sensitivity to retrograde amnesia. During the first 75 min following training, relief-memory is stable, whereas punishment-memory decays to half of the initial score. By 24 h after training, however, relief-memory is lost, whereas a third of punishment-memory scores still remain. In accordance with such rapid temporal decay from 75 min on, retrograde amnesia erases relief-memory but leaves a half of punishment-memory scores intact. These findings suggest differential mechanistic bases for punishment- and relief-memory, thus offering possibilities for separately interfering with either of them
Synapsin Determines Memory Strength after Punishment- and Relief-Learning
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: ânegativeâ memories for stimuli preceding them and âpositiveâ memories for stimuli experienced at the moment of ârelief.â Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (âforward conditioningâ of the odor), whereas after shock-odor training (âbackward conditioningâ of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences