27 research outputs found

    Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology

    Get PDF
    AbstractThis review will discuss the use of small-angle X-ray diffraction approaches to study the organization of lipids in plasma membranes derived from two distinct mammalian cell types: arterial smooth muscle cells and ocular lens fiber cells. These studies indicate that cholesterol at an elevated concentration can self-associate and form immiscible domains in the plasma membrane, a phenomenon that contributes to both physiologic and pathologic cellular processes, depending on tissue source. In plasma membrane samples isolated from atherosclerotic smooth muscle cells, the formation of sterol-rich domains is associated with loss of normal cell function, including ion transport activity and control of cell replication. Analysis of meridional diffraction patterns from intact and reconstituted plasma membrane samples indicates the presence of an immiscible cholesterol domain with a unit cell periodicity of 34 Å, consistent with a cholesterol monohydrate tail-to-tail bilayer, under disease conditions. These cholesterol domains were observed in smooth muscle cells enriched with cholesterol in vitro as well as from cells obtained ex vivo from an animal model of atherosclerosis. By contrast, well-defined cholesterol domains appear to be essential to the normal physiology of fiber cell plasma membranes of the human ocular lens. The organization of cholesterol into separate domains underlies the role of lens fiber cell plasma membranes in maintaining lens transparency. These domains may also interfere with cataractogenic aggregation of soluble lens proteins at the membrane surface. Taken together, these analyses provide examples of both physiologic and pathologic roles that sterol-rich domains may have in mammalian plasma membranes. These findings support a model of the membrane in which cholesterol aggregates into structurally distinct regions that regulate the function of the cell membrane

    Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells.

    Get PDF
    BACKGROUND: Adipose tissue provides a readily available source of autologous stem cells. Adipose-derived stem cells (ASCs) have been proposed as a source for endothelial cell substitutes for lining the luminal surface of tissue engineered bypass grafts. Endothelial nitric oxide synthase (eNOS) is a key protein in endothelial cell function. Currently, endothelial differentiation from ASCs is limited by poor eNOS expression. The goal of this study was to investigate the role of three molecules, sphingosine-1-phosphate (S1P), bradykinin, and prostaglandin-E1 (PGE1) in ASC endothelial differentiation. Endothelial differentiation markers (CD31, vWF and eNOS) were used to evaluate the level of ASCs differentiation capability. RESULTS: ASCs demonstrated differentiation capability toward to adipose, osteocyte and endothelial like cell phenotypes. Bradykinin, S1P and PGE were used to promote differentiation of ASCs to an endothelial phenotype. Real-time PCR showed that all three molecules induced significantly greater expression of endothelial differentiation markers CD31, vWF and eNOS than untreated cells. Among the three molecules, S1P showed the highest up-regulation on endothelial differentiation markers. Immunostaining confirmed presence of more eNOS in cells treated with S1P than the other groups. Cell growth measurements by MTT assay, cell counting and EdU DNA incorporation suggest that S1P promotes cell growth during ASCs endothelial differentiation. The S1P1 receptor was expressed in ASC-differentiated endothelial cells and S1P induced up-regulation of PI3K. CONCLUSIONS: S1P up-regulates endothelial cell markers including eNOS in ASCs differentiated to endothelial like cells. This up-regulation appears to be mediated by the up-regulation of PI3K via S1P1 receptor. ASCs treated with S1P offer promising use as endothelial cell substitutes for tissue engineered vascular grafts and vascular networks

    Long Term Neuroprotective Effects of Human Adipose-Derived Stem Cells in Neonatal Rats Post Hypoxic Ischemic Encephalopathy

    Get PDF
    Background: Hypoxemic ischemic encephalopathy (HIE) is a major cause of morbidity and mortality in the neonatal population. Recent research has shown human adipose stem cells (hASCs) to have neuroprotective effects in animal models of HIE. This study tested the hypothesis that neurodevelopmental outcomes would be improved using hASC therapy in term neonatal HIE rat model. Methods: Seven day old rats underwent left carotid artery ligation followed by 8% oxygen for 120 minutes, or carotid isolation in shams. Forty-eight hours after surgery half of the rats received hASCs and half normal saline (NS) intravenously. Rota-rod and cylinder tests were used to assess skill learning, balance, coordination, and symmetry of limb use at 2, 4 and 6 weeks of life. Results: HIE rats treated with hASCs traveled further on Rota-rod (p=0.03) when compared to HIE with NS groups. Those in the HIE-hASC group had significant improvement in the usage of the affected limb at week 6 (p=0.03) compared to those with HIE and NS. Rats receiving hASCs post HIE had less cortical atrophy compared to those with HIE and NS. Conclusions: Rats with HIE treated with hASCs showed improvement in long-term neurodevelopmental aspects and decreased cortical atrophy compared to HIE control group

    A Membrane Defect in the Pathogenesis of the Smith-Lemli-Opitz Syndrome

    Get PDF
    The Smith-Lemli-Opitz syndrome (SLOS) is an often lethal birth defect resulting from mutations in the gene responsible for the synthesis of the enzyme 3beta-hydroxy-steroid-Delta7-reductase, which catalyzes the reduction of the double bond at carbon 7 on 7-dehydrocholesterol (7-DHC) to form unesterified cholesterol. We hypothesize that the deficiency in cholesterol biosynthesis and subsequent accumulation of 7-DHC in the cell membrane leads to defective composition, organization, dynamics, and function of the cell membrane. Using skin fibroblasts obtained from SLOS patients, we demonstrate that the SLOS membrane has increased 7-DHC and reduced cholesterol content and abnormal membrane fluidity. X-ray diffraction analyses of synthetic membranes prepared to mimic SLOS membranes revealed atypical membrane organization. In addition, calcium permeability is markedly augmented, whereas membrane-bound Na+/K+ATPase activity, folate uptake, inositol-1,4,5-trisphosphate signaling, and cell proliferation rates are markedly suppressed. These data indicate that the disturbance in membrane sterol content in SLOS, likely at the level of membrane caveolae, directly contributes to the widespread tissue abnormalities in this disease

    Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis

    Get PDF
    BACKGROUND: Several studies demonstrated an association of homocysteine plasma levels and the plasma lipoprotein profile. This cross-sectional pilot study aimed at analyzing whether blood levels of the two important cofactors of homocysteine metabolism, folate and vitamin B12, coincide with the lipoprotein profile. METHODS: In a retrospective single center approach, we analyzed the laboratory database (2003-2006) of the University Hospital Bonn, Germany, including 1743 individuals, in whom vitamin B12, folate and at least one lipoprotein parameter had been determined by linear multilogistic regression. RESULTS: Higher folate serum levels were associated with lower serum levels of low density lipoprotein cholesterol (LDL-C; Beta = -0.164; p < 0.001), higher levels of high density lipoprotein cholesterol (HDL-C; Beta = 0.094; p = 0.021 for trend) and a lower LDL-C-C/HDL-C-ratio (Beta = -0.210; p < 0.001). Using ANOVA, we additionally compared the individuals of the highest with those of the lowest quartile of folate. Individuals of the highest folate quartile had higher levels of HDL-C (1.42 +/- 0.44 mmol/l vs. 1.26 +/- 0.47 mmol/l; p = 0.005), lower levels of LDL-C (3.21 +/- 1.04 mmol/l vs. 3.67 +/- 1.10 mmol/l; p = 0.001) and a lower LDL-C/HDL-C- ratio (2.47 +/- 1.18 vs. 3.77 +/- 5.29; p = 0.002). Vitamin B12 was not associated with the lipoprotein profile. CONCLUSION: In our study sample, high folate levels were associated with a favorable lipoprotein profile. A reconfirmation of these results in a different study population with a well defined status of health, diet and medication is warranted

    Regulating Cross-Talk Between Vascular Smooth Muscle Cells

    No full text
    corecore