15 research outputs found
Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach
© 2018 Published by John Wiley & Sons Ltd. There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.Link_to_subscribed_fulltex
Multi-host environments select for host-generalist conjugative plasmids
BACKGROUND: Conjugative plasmids play an important role in bacterial evolution by transferring ecologically important genes within and between species. A key limit on interspecific horizontal gene transfer is plasmid host range. Here, we experimentally test the effect of single and multi-host environments on the host-range evolution of a large conjugative mercury resistance plasmid, pQBR57. Specifically, pQBR57 was conjugated between strains of a single host species, either P. fluorescens or P. putida, or alternating between P. fluorescens and P. putida. Crucially, the bacterial hosts were not permitted to evolve allowing us to observe plasmid evolutionary responses in isolation. RESULTS: In all treatments plasmids evolved higher conjugation rates over time. Plasmids evolved in single-host environments adapted to their host bacterial species becoming less costly, but in the case of P. fluorescens-adapted plasmids, became costlier in P. putida, suggesting an evolutionary trade-off. When evolved in the multi-host environment plasmids adapted to P. fluorescens without a higher cost in P. putida. CONCLUSION: Whereas evolution in a single-host environment selected for host-specialist plasmids due to a fitness trade-off, this trade-off could be circumvented in the multi-host environment, leading to the evolution of host-generalist plasmids
Communication in bacteria: an ecological and evolutionary perspective
Individual bacteria can alter their behaviour through chemical interactions between organisms in microbial communities - this is generally referred to as quorum sensing. Frequently, these interactions are interpreted in terms of communication to mediate coordinated, multicellular behaviour. We show that the nature of interactions through quorum-sensing chemicals does not simply involve cooperative signals, but entails other interactions such as cues and chemical manipulations. These signals might have a role in conflicts within and between species. The nature of the chemical interaction is important to take into account when studying why and how bacteria react to the chemical substances that are produced by other bacteria
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations