14,471 research outputs found
Waveguide-based OPO source of entangled photon pairs
In this paper we present a compact source of narrow-band energy-time
entangled photon pairs in the telecom regime based on a Ti-indiffused
Periodically Poled Lithium Niobate (PPLN) waveguide resonator, i.e. a waveguide
with end-face dielectric multi-layer mirrors. This is a monolithic doubly
resonant Optical Parametric Oscillator (OPO) far below threshold, which
generates photon pairs by Spontaneous Parametric Down Conversion (SPDC) at
around 1560nm with a 117MHz (0.91 pm)- bandwidth. A coherence time of 2.7 ns is
estimated by a time correlation measurement and a high quality of the entangled
states is confirmed by a Bell-type experiment. Since highly coherent
energy-time entangled photon pairs in the telecom regime are suitable for long
distance transmission and manipulation, this source is well suited to the
requirements of quantum communication.Comment: 13 page
Kerr coefficients of plasma resonances in Josephson junction chains
We present an experimental and theoretical analysis of the self- and
cross-Kerr effect of extended plasma resonances in Josephson junction chains.
We calculate the Kerr coefficients by deriving and diagonalizing the
Hamiltonian of a linear circuit model for the chain and then adding the
Josephson non-linearity as a perturbation. The calculated Kerr-coefficients are
compared with the measurement data of a chain of 200 junctions. The Kerr effect
manifests itself as a frequency shift that depends linearly on the number of
photons in a resonant mode. By changing the input power on a low signal level,
we are able to measure this shift. The photon number is calibrated using the
self-Kerr shift calculated from the sample parameters. We then compare the
measured cross-Kerr shift with the theoretical prediction, using the calibrated
photon number.Comment: 10 pages, 9 figure
Herschel Observations of the T Cha Transition Disk: Constraining the Outer Disk Properties
T Cha is a nearby (d similar to 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 mu m) of T Cha from the "Dust, Ice, and Gas in Time" Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 mu m without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond similar to 40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.DIGIT Herschel Open Time Key ProgramNASAAlexander von Humboldt FoundationEuropean CommissionAgence Nationale pour la Recherche of France PERG06-GA-2009-256513, ANR-07-BLAN-0221, ANR-2010-JCJC-0504-01CNRS/INSU, FranceAstronom
American cultural regions mapped through the lexical analysis of social media
Cultural areas represent a useful concept that cross-fertilizes diverse
fields in social sciences. Knowledge of how humans organize and relate their
ideas and behavior within a society helps to understand their actions and
attitudes towards different issues. However, the selection of common traits
that shape a cultural area is somewhat arbitrary. What is needed is a method
that can leverage the massive amounts of data coming online, especially through
social media, to identify cultural regions without ad-hoc assumptions, biases
or prejudices. This work takes a crucial step in this direction by introducing
a method to infer cultural regions based on the automatic analysis of large
datasets from microblogging posts. The approach presented here is based on the
principle that cultural affiliation can be inferred from the topics that people
discuss among themselves. Specifically, regional variations in written
discourse are measured in American social media. From the frequency
distributions of content words in geotagged Tweets, the regional hotspots of
words' usage are found, and from there, principal components of regional
variation are derived. Through a hierarchical clustering of the data in this
lower-dimensional space, this method yields clear cultural areas and the topics
of discussion that define them. It uncovers a manifest North-South separation,
which is primarily influenced by the African American culture, and further
contiguous (East-West) and non-contiguous divisions that provide a
comprehensive picture of today's cultural areas in the US.Comment: 13 pages, 5 figures; contains Supplementary Informatio
The Herschel Digit Survey Of Weak-Line T Tauri Stars: Implications For Disk Evolution And Dissipation
As part of the "Dust, Ice, and Gas In Time (DIGIT)" Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 mu m) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 "pre-transitional" object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 mu m Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 mu m fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F-70/F-70,(*) greater than or similar to 5-15 and L-disk/L-* greater than or similar to 10(-3) to 10(-4) can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.NASA through JPL/CaltechNASA through the Sagan Fellowship ProgramEuropean Commission PERG06-GA-2009-256513Agence Nationale pour la Recherche (ANR) of France ANR-2010-JCJC-0504-01CFHT 11AH96Astronom
Comparative analysis of hepatitis C virus phylogenies from coding and non-coding regions: the 5' untranslated region (UTR) fails to classify subtypes
BACKGROUND: The duration of treatment for HCV infection is partly indicated by the genotype of the virus. For studies of disease transmission, vaccine design, and surveillance for novel variants, subtype-level classification is also needed. This study used the Shimodaira-Hasegawa test and related statistical techniques to compare phylogenetic trees obtained from coding and non-coding regions of a whole-genome alignment for the reliability of subtyping in different regions. RESULTS: Different regions of the HCV genome yield inconsistent phylogenies, which can lead to erroneous conclusions about classification of a given infection. In particular, the highly conserved 5' untranslated region (UTR) yields phylogenetic trees with topologies that differ from the HCV polyprotein and complete genome phylogenies. Phylogenetic trees from the NS5B gene reliably cluster related subtypes, and yield topologies consistent with those of the whole genome and polyprotein. CONCLUSION: These results extend those from previous studies and indicate that, unlike the NS5B gene, the 5' UTR contains insufficient variation to resolve HCV classifications to the level of viral subtype, and fails to distinguish genotypes reliably. Use of the 5' UTR for clinical tests to characterize HCV infection should be replaced by a subtype-informative test
DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.
During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.We thank Korbinian Schneeberger and Beth Rowan for advice implementing TIGER and Ler polymorphism data, Donna Bond for pJawohl-Act2, Quentin Gouil for the bisulfite sequencing protocol, Simon Andrews and Felix Krueger for advice using SeqMonk, Gregory Copenhaver and Avi Levy for fluorescent lines, Raphael Mercier for zip4-2 fancm-1, Chris Franklin for the ASY1 antibody, and the Gurdon Institute Imaging Facility for access to microscopes. Research was supported by a Broodbank Fellowship (to N.E.Y.), a Royal Society University Research Fellowship (to I.R.H.), grant GAT2962 from the Gatsby Charitable Foundation (to I.R.H.), and Biotechnology and Biological Sciences Research Council grant BB/L006847/1 (to I.R.H.).This is the final version of the article. It first appeared from Cold Spring Habour Laboratory Press via http://dx.doi.org/10.1101/gad.270876.11
Why Chromatic Imaging Matters
During the last two decades, the first generation of beam combiners at the
Very Large Telescope Interferometer has proved the importance of optical
interferometry for high-angular resolution astrophysical studies in the near-
and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u-v
coverage per pointing increases significantly, providing an opportunity to use
reconstructed images as powerful scientific tools. Therefore, interferometric
imaging is already a key feature of the new generation of VLTI instruments, as
well as for other interferometric facilities like CHARA and JWST. It is thus
imperative to account for the current image reconstruction capabilities and
their expected evolutions in the coming years. Here, we present a general
overview of the current situation of optical interferometric image
reconstruction with a focus on new wavelength-dependent information,
highlighting its main advantages and limitations. As an Appendix we include
several cookbooks describing the usage and installation of several state-of-the
art image reconstruction packages. To illustrate the current capabilities of
the software available to the community, we recovered chromatic images, from
simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we
aim at showing the importance of selecting good regularization functions and
their impact on the reconstruction.Comment: Accepted for publication in Experimental Astronomy as part of the
topical collection: Future of Optical-infrared Interferometry in Europ
- …