85 research outputs found

    Experimental Progress in Computation by Self-Assembly of DNA Tilings

    Get PDF
    Approaches to DNA-based computing by self-assembly require the use of D. T A nanostructures, called tiles, that have efficient chemistries, expressive computational power: and convenient input and output (I/O) mechanisms. We have designed two new classes of DNA tiles: TAO and TAE, both of which contain three double-helices linked by strand exchange. Structural analysis of a TAO molecule has shown that the molecule assembles efficiently from its four component strands. Here we demonstrate a novel method for I/O whereby multiple tiles assemble around a single-stranded (input) scaffold strand. Computation by tiling theoretically results in the formation of structures that contain single-stranded (output) reported strands, which can then be isolated for subsequent steps of computation if necessary. We illustrate the advantages of TAO and TAE designs by detailing two examples of massively parallel arithmetic: construction of complete XOR and addition tables by linear assemblies of DNA tiles. The three helix structures provide flexibility for topological routing of strands in the computation: allowing the implementation of string tile models

    Coupling Strategies for the Synthesis of Peptide-Oligonucleotide Conjugates for Patterned Synthetic Biomineralization

    Get PDF
    This work describes preparation strategies for peptide-oligonucleotide conjugates that combine the self-assembling behavior of DNA oligonucleotides with the molecular recognition capabilities of peptides. The syntheses include a solution-phase fragment coupling reaction and a solid-phase fragment coupling strategy where the oligonucleotide has been immobilized on DEAE Sepharose. The yield of four coupling reagents is evaluated, two reagents in water, EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) and DMTMM (4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium chloride), and two in dimethylformamide (DMF), PyBOP ((Benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate) and HBTU (O-benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate), while the oligonucleotide fragment is either in solution or immobilized on DEAE. These coupling strategies rely on an unprotected 5′ amino linker on the oligonucleotide reacting with the peptide C-terminus. The peptide, selected from a combinatorial library for its gold-binding behavior, was 12 amino acids long with an N-terminus acetyl cap. Formation of the conjugates was confirmed by gel electrophoresis and mass spectrometry while molecular recognition functionality of the peptide portion was verified using atomic force microscopy. Solution-phase yields were superior to their solid-phase counterparts. EDC resulted in the highest yield for both solution-phase (95%) and solid-phase strategies (24%), while the DMF-based reagents, PyBOP and HBTU, resulted in low yields with reduced recovery. All recoverable conjugates demonstrated gold nanoparticle templating capability

    Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes

    Get PDF
    This paper extends the study and prototyping of unusual DNA motifs, unknown in nature, but founded on principles derived from biological structures. Artificially designed DNA complexes show promise as building blocks for the construction of useful nanoscale structures, devices, and computers. The DNA triple crossover (TX) complex described here extends the set of experimentally characterized building blocks. It consists of four oligonucleotides hybridized to form three double-stranded DNA helices lying in a plane and linked by strand exchange at four immobile crossover points. The topology selected for this TX molecule allows for the presence of reporter strands along the molecular diagonal that can be used to relate the inputs and outputs of DNA-based computation. Nucleotide sequence design for the synthetic strands was assisted by the application of algorithms that minimize possible alternative base-pairing structures. Synthetic oligonucleotides were purified, stoichiometric mixtures were annealed by slow cooling, and the resulting DNA structures were analyzed by nondenaturing gel electrophoresis and heat-induced unfolding. Ferguson analysis and hydroxyl radical autofootprinting provide strong evidence for the assembly of the strands to the target TX structure. Ligation of reporter strands has been demonstrated with this motif, as well as the self-assembly of hydrogen-bonded two-dimensional crystals in two different arrangements. Future applications of TX units include the construction of larger structures from multiple TX units, and DNA-based computation. In addition to the presence of reporter strands, potential advantages of TX units over other DNA structures include space for gaps in molecular arrays, larger spatial displacements in nanodevices, and the incorporation of well-structured out-of-plane components in two-dimensional arrays

    Programming DNA Tube Circumferences

    Get PDF
    Synthesizing molecular tubes with monodisperse, programmable circumferences is an important goal shared by nanotechnology, materials science, and supermolecular chemistry. We program molecular tube circumferences by specifying the complementarity relationships between modular domains in a 42-base single-stranded DNA motif. Single-step annealing results in the self-assembly of long tubes displaying monodisperse circumferences of 4, 5, 6, 7, 8, 10, or 20 DNA helices

    Stepwise Self-Assembly of DNA Tile Lattices Using dsDNA Bridges

    Get PDF
    The simple helical motif of double-strand DNA (dsDNA) has typically been judged to be uninteresting for assembly in DNA-based nanotechnology applications. In this letter, we demonstrate construction of superstructures consisting of heterogeneous DNA motifs using dsDNA in conjunction with more complex, cross-tile building blocks. Incorporation of dsDNA bridges in stepwise assembly processes can be used for controlling length and directionality of superstructures and is analogous to the “reprogramming” of sticky-ends displayed on the DNA tiles. Two distinct self-assembled DNA lattices, fixed-size nanoarrays, and extended 2D crystals of nanotracks with nanobridges, are constructed and visualized by high-resolution, liquid-phase atomic force microscopy

    Sensitization of Transforming Growth Factor-β Signaling by Multiple Peptides Patterned on DNA Nanostructures

    Get PDF
    We report sensitization of a cellular signaling pathway by addition of functionalized DNA nanostructures. Signaling by transforming growth factor β (TGFβ) has been shown to be dependent on receptor clustering. By patterning a DNA nanostructure with closely spaced peptides that bind to TGFβ we observe increased sensitivity of NMuMG cells to TGFβ ligand. This is evidenced by translocation of secondary messenger proteins to the nucleus and stimulation of an inducible luciferase reporter at lower concentrations of TGFβ ligand. We believe this represents an important initial step towards realization of DNA as a self assembling and biologically compatible material for use in tissue engineering and drug delivery

    Autonomous Programmable Biomolecular Devices using Self-Assembled DNA

    No full text
    Surveying recent developments in bio-DNA computing. 46 September 2007/Vol. 50, No. 9 COMMUNICATIONS OF THE ACM The particular molecular-scale devices that are the topic of this article are known as DNA nanostructures. As will be explained, DNA nanostructures have some unique advantages among nanostructures: they are relatively easy to design, fairly predictable in their geometric structures, and have been experimentally implemented in a growing number of laboratories around the world. They are constructed primarily of synthetic DNA. A key principle in the study of DNA nanostructures is the use of self-assembly processes to actuate the molecular assembly. Since self-assembly operates naturally at the molecular scale, it does not suffer from the limitation in scale reduction that restricts lithography or other more conventional top-down manufacturing techniques. ILLUSTRATION BY JEAN- FRANÇOIS PODEVIN This article illustrates the way in which computer science techniques and methods influence this emerging field. Some of the key questions one might ask about biomolecular devices include: • What is the theoretical basis for these devices? • How will such devices be designed? • How can we simulate them prior to manufacture? • How can we optimize their performance? • How will such devices be manufactured? • How much do the devices cost? • How scalable is the device design? • How will I/O be done? • How will they be programmed? • What efficient algorithms can be programmed? • What will be their applications? • How can we correct for errors or repair them? Note that these questions are exactly the sort of questions that computer scientists routinely ask about conventional computing devices. The discipline of computer science has developed a wide 48 September 2007/Vol. 50, No. 9 COMMUNICATIONS OF THE ACM variety of techniques to address such basic questions, and we will later point out some that have an important impact on molecular-scale devices. DNA Nanotechnology and its Use to Assemble Molecular-Scal
    corecore