44 research outputs found
Detection of High Energy Ionizing Radiation using Deeply Depleted Graphene-Oxide-Semiconductor Junctions
Graphene's linear bandstructure and two-dimensional density of states provide
an implicit advantage for sensing charge. Here, these advantages are leveraged
in a deeply depleted graphene-oxide-semiconductor (D2GOS) junction detector
architecture to sense carriers created by ionizing radiation. Specifically, the
room temperature response of the silicon-based D2GOS junction is analyzed
during irradiation with 20 MeV Si4+ ions. Detection was demonstrated for doses
ranging from 12-1200 ions with device functionality maintained with no
substantive degradation. To understand the device response, D2GOS pixels were
characterized post-irradiation via a combination of electrical
characterization, Raman spectroscopy, and photocurrent mapping. This combined
characterization methodology underscores the lack of discernible damage caused
by irradiation to the graphene while highlighting the nature of interactions
between the incident ions and the silicon absorber.Comment: 15 pages, 4 figure
Photo-physics and electronic structure of lateral graphene/MoS2 and metal/MoS2 junctions
Integration of semiconducting transition metal dichalcogenides (TMDs) into
functional optoelectronic circuitries requires an understanding of the charge
transfer across the interface between the TMD and the contacting material.
Here, we use spatially resolved photocurrent microscopy to demonstrate
electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2)
interface. A 10x larger photocurrent is extracted at the EG/MoS2 interface when
compared to metal (Ti/Au) /MoS2 interface. This is supported by semi-local
density-functional theory (DFT), which predicts the Schottky barrier at the
EG/MoS2 interface to be ~2x lower than Ti/MoS2. We provide a direct
visualization of a 2D material Schottky barrier through combination of angle
resolved photoemission spectroscopy with spatial resolution selected to be ~300
nm (nano-ARPES) and DFT calculations. A bending of ~500 meV over a length scale
of ~2-3 micrometer in the valence band maximum of MoS2 is observed via
nano-ARPES. We explicate a correlation between experimental demonstration and
theoretical predictions of barriers at graphene/TMD interfaces. Spatially
resolved photocurrent mapping allows for directly visualizing the uniformity of
built-in electric fields at heterostructure interfaces, providing a guide for
microscopic engineering of charge transport across heterointerfaces. This
simple probe-based technique also speaks directly to the 2D synthesis community
to elucidate electronic uniformity at domain boundaries alongside morphological
uniformity over large areas
Low-fidelity DNA synthesis by the L979F mutator derivative of Saccharomyces cerevisiae DNA polymerase ζ
To probe Pol ζ functions in vivo via its error signature, here we report the properties of Saccharomyces cerevisiae Pol ζ in which phenyalanine was substituted for the conserved Leu-979 in the catalytic (Rev3) subunit. We show that purified L979F Pol ζ is 30% as active as wild-type Pol ζ when replicating undamaged DNA. L979F Pol ζ shares with wild-type Pol ζ the ability to perform moderately processive DNA synthesis. When copying undamaged DNA, L979F Pol ζ is error-prone compared to wild-type Pol ζ, providing a biochemical rationale for the observed mutator phenotype of rev3-L979F yeast strains. Errors generated by L979F Pol ζ in vitro include single-base insertions, deletions and substitutions, with the highest error rates involving stable misincorporation of dAMP and dGMP. L979F Pol ζ also generates multiple errors in close proximity to each other. The frequency of these events far exceeds that expected for independent single changes, indicating that the first error increases the probability of additional errors within 10 nucleotides. Thus L979F Pol ζ, and perhaps wild-type Pol ζ, which also generates clustered mutations at a lower but significant rate, performs short patches of processive, error-prone DNA synthesis. This may explain the origin of some multiple clustered mutations observed in vivo
Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)
Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells
Metrology of gan electronics using micro-raman spectroscopy
Possessing a wide band gap and large break down field, gallium nitride (GaN) is of interest for a host of high power, high frequency applications including next generation cellular base stations, advanced military radar, and WiMAX networks. Much of this interest stems from the continued development of the AlGaN/GaN high electron mobility transistor (HEMT) that is capable of operating at sizable power densities and switching speeds. The same fields responsible for this performance, however, also elicit acute device heating and elastic loads. These induced thermomechanical loads limit both performance and reliability thus necessitating continued improvement in the management and characterization of the coupled environments. In response, this study establishes a new implementation of Raman spectroscopy capable of simultaneously measuring the operational temperature and stress in a HEMT using only the Stokes response. First, the linewidth (FWHM) of the Stokes signal is utilized to quantify the operating temperature of a HEMT independent to the influences of stress. Second, a new method, incorporating the use of the linewidth and peak position in tandem, is developed to estimate the biaxial thermoelastic stress that arises during device operation. With this capability, the HEMT's resultant load is assessed, highlighting the large role of the residual stress on the total mechanical state of the device. Subsequently, this same linewidth is leveraged to identify the distinct effect that electrical carriers have on the thermally relevant decay of longitudinal optical phonon modes. Further investigation of the lattice transport then concludes the study by way of an analytical treatment describing the significant influence of interfacial disorder on the energy transport at GaN/substrate boundaries.Ph.D.Committee Chair: Graham, Samuel; Committee Member: Bassiri-Gharb, Nazanin; Committee Member: Doolittle, William A.; Committee Member: Garimella, Srinivas; Committee Member: Green, Dan; Committee Member: Sitaraman, Sures