97 research outputs found

    Toward Whole-Brain Minimally-Invasive Vascular Imaging

    Full text link
    Imaging the brain vasculature can be critical for cerebral perfusion monitoring in the context of neurocritical care. Although ultrasensitive Doppler (UD) can provide good sensitivity to cerebral blood volume (CBV) in a large field of view, it remains difficult to perform through the skull. In this work, we investigate how a minimally invasive burr hole, performed for intracranial pressure (ICP) monitoring, could be used to map the entire brain vascular tree. We explored the use of a small motorized phased array probe with a non-implantable preclinical prototype in pigs. The scan duration (18 min) and coverage (62 ±\pm 12 % of the brain) obtained allowed global CBV variations detection (relative in brain Dopplerdecrease =-3[-4-+16]% \& Dopplerincrease. = +1[-3-+15]%, n = 6 \& 5) and stroke detection (relative in core Dopplerstroke. =-25%, n = 1). This technology could one day be miniaturized to be implanted for brain perfusion monitoring in neurocritical care

    Leptomeningeal collaterals regulate reperfusion in ischemic stroke

    Get PDF
    Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet unknown functions. Utilizing a thrombin-based mouse model of stroke and the gold standard fibrinolytic treatment rt-PA, we here show that LMCs play a critical role in preserving vascular function in ischemic territories. We applied laser speckle contrast imaging, ultrafast ultrasound, and two-photon microscopy, to show that after thrombolysis, LMCs allow for gradual reperfusion resulting in small infarcts. On the contrary, in mice with poor LMCs, distal segments of recanalized arteries collapse and deleterious hyperemia causes hemorrhage and mortality. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for gradual reperfusion of ischemic tissues after stroke

    Leptomeningeal collaterals regulate reperfusion in ischemic stroke and rescue the brain from futile recanalization.

    Get PDF
    Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Palpation par force de radiation ultrasonore et échographie ultrarapide : Applications à la caractérisation tissulaire in vivo.

    Get PDF
    L'échographie constitue aujourd'hui un des piliers de l'imagerie médicale. Appliquée en clinique depuis plus de quarante ans, elle repose sur les ultrasons, ondes mécaniques de compression à hautes fréquences, pour réaliser des images principalement morphologiques des organes. Développée plus récemment, l'élastographie permet de sonder directement les propriétés viscoélastiques des tissus et pourrait ainsi renseigner sur l'état pathologique des tissus comme le fait la palpation du médecin. L'élastographie transitoire, basée sur l'étude de la propagation des ondes de cisaillement naturelles ou artifi- cielles, permet une mesure quantitative de ces propriétés viscoélastiques. Combinant la pression de radiation ultrasonore, véritable palpation à distance, et l'échographie ultrarapide, le Supersonic Shear Imaging peut gé- nérer et suivre des ondes de cisaillement in vivo en quelques millisecondes. On peut alors, par inversion de l'équation d'onde, former des cartes d'élasticité du milieu. Nous proposons ici une nouvelle méthode de reconstruction des cartes d'élasticité, plus robuste, qui est ensuite appliquée, in vivo et en clinique, à l'imagerie des lésions du sein, à l'étude de la fibrose du foie ainsi qu'à celle des maladies neuromusculaires. Une méthode de mesure de la dispersion de l'onde de cisaillement générée est aussi proposée et testée in vivo. Elle permet de retrouver, en une seule acquisition, les propriétés viscoélastiques complètes des tissus et a été appliquée au foie et au muscle de plusieurs volontaires sains. Finalement, nous nous intéressons à l'échographie ultrarapide de la contraction du muscle, déclenchée par électrostimulation. Cette méthode, locale et transitoire, permet de retrouver les paramètres clés de la réponse musculaire et offre ainsi, couplée avec l'électromyographie, des perspectives cliniques très intéressantes pour l'étude de la physiologie du muscle ou les maladies neuromusculaires.Non disponibl

    Etude de l'activation des métallocènes par de nouveaux dérivés aluminiques (application à la polymérisation des oléfines)

    Full text link
    La synthèse par voie non-hydrolytique de nouveaux activateurs aluminiques pour la polymérisation Ziegler-Natta a été envisagée par réaction entre le triméthylaluminium (TMA) et l'acide benzoïque (AB) ou la benzophénone (BZ). Dans le cas de l'acide benzoïque, il a été montré que des structures de type méthylaluminoxane peuvent être obtenues. L'étude des réactions mises en jeu montre clairement l'importance de la température de réaction et des rapports TMA/AB ou TMA/BZ utilisés sur la structure et la composition des produits forme s. L'examen par spectroscopie UV/visible du comportement du métallocène RAC-ET(IND)2ZRCL2 en présence de ces composés à permis d'estimer les capacités de ces nouveaux systèmes dans le processus de "cationisation" des zirconocènes. Enfin, une étude de la polymérisation de l'éthylène et de l'hexène a confirmé que certains de ces dérivés sont des activateurs efficaces pour la polymérisation des oléfines par coordination.BORDEAUX1-BU Sciences-Talence (335222101) / SudocSudocFranceF
    corecore