20 research outputs found

    Site-directed mutagenesis of Saccharomyces cerevisiae Ī²-tubulin: interaction between residue 167 and benzimidazole compounds

    Get PDF
    AbstractBenzimidazoles are widely used as anthelmintic agents and systemic fungicides. In susceptible organisms, benzimidazoles bind to Ī²-tubulin and block microtubule polymerization. To further characterize this interaction, site-directed mutagenesis followed by gene replacement was used to change Saccharomyces cerevisiae Ī²-tubulin residue Phe-167 to Tyr. Consistent with previous studies, this mutation resulted in at least 3ā€“4-fold decreased sensitivity to the benzimidazole derivatives carbendazim and nocodazole. The Tyr-167 mutant was cold sensitive, implying a direct effect on benzimidazole binding rather than a nonspecific increase in microtubule stability. Surprisingly, the mutant had 8-fold increased sensitivity to the derivative benomyl, which is structurally identical to carbendazim except at position 1. This suggests that residue 167 interacts with benzimidazoles in the vicinity of the 1-position

    Role for Fks1 in the Intrinsic Echinocandin Resistance of Fusarium solani as Evidenced by Hybrid Expression in Saccharomyces cerevisiaeā–æ

    No full text
    The opportunistic mold Fusarium solani is intrinsically resistant to cell wall synthesis-inhibiting echinocandins (ECs), including caspofungin and micafungin. Mutations that confer acquired EC resistance in Saccharomyces cerevisiae and other normally susceptible yeast species have been mapped to the Fks1 gene; among these is the mutation of residue 639 from Phe to Tyr (F639Y) within a region designated hot spot 1. Fks1 sequence analysis identified the equivalent of Y639 in F. solani as well as in Scedosporium prolificans, another intrinsically EC-resistant mold. To test its role in intrinsic EC resistance, we constructed Fks1 hybrids in S. cerevisiae that incorporate F. solani hot spot 1 and flanking residues. Hybrid construction was accomplished by a PCR-based method that was validated by studies with Fks1 sequences from EC-susceptible Aspergillus fumigatus and paired EC-susceptible and -resistant Candida glabrata isolates. In support of our hypothesis, hybrid Fks1 incorporating F. solani hot spot 1 conferred significantly reduced EC susceptibility, 4- to 8-fold less than that of wild-type S. cerevisiae and 8- to 32-fold less than that of the same hybrid with an F639 mutation. We propose that Fks1 sequences represent determinants of intrinsic EC resistance in Fusarium and Scedosporium species and, potentially, other fungi

    Effects of Cetylpyridinium Chloride Resistance and Treatment on Fluconazole Activity versus Candida albicans

    No full text
    Mouthwash antiseptic cetylpyridinium chloride (CPC) has potent activity against Candida albicans; however, two of five azole-resistant strains showed reduced CPC susceptibility. To further examine the potential for cross-resistance, CPC-resistant mutants were selected in vitro and their fluconazole susceptibility was tested. MICs were unchanged, and trailing growth generally decreased. With CPC-fluconazole combinations, both antagonism and synergism were observed, which can be explained, in part, by CDR1-CDR2 multidrug transporter upregulation

    Mutational Analysis of Flucytosine Resistance in Candida glabrataā–æ

    No full text
    The antifungal flucytosine (5-fluorocytosine [5FC]) is a prodrug metabolized to its toxic form, 5-fluorouracil (5FU), only by organisms expressing cytosine deaminase. One such organism is Candida glabrata, which has emerged as the second most common agent of bloodstream and mucosal candidiasis. This emergence has been attributed to the high rate at which C. glabrata develops resistance to azole antifungals. As an oral agent, 5FC represents an attractive alternative or complement to azoles; however, the frequency of 5FC resistance mutations and the mechanisms by which these mutations confer resistance have been explored only minimally. On RPMI 1640 medium containing 1 Ī¼g/ml 5FC (32-fold above the MIC, but less than 1/10 of typical serum levels), resistant mutants occurred at a relatively low frequency (2 Ɨ 10āˆ’7). Three of six mutants characterized were 5FU cross-resistant, suggesting a mutation downstream of the Fcy1 gene (cytosine deaminase), which was confirmed by sequence analysis of the Fur1 gene (uracil phosphoribosyl transferase). The remaining three mutants had Fcy1 mutations. To ascertain the effects of 5FC resistance mutations on enzyme function, mutants were isolated in ura3 strains. Three of seven mutants harbored Fcy1 mutations and failed to grow in uridine-free, cytosine-supplemented medium, consistent with inactive Fcy1. The remainder grew in this medium and had wild-type Fcy1; further analysis revealed these to be mutated in the Fcy2L homolog of S. cerevisiae Fcy2 (purine-cytosine transporter). Based on this analysis, we characterized three 5FC-resistant clinical isolates, and mutations were identified in Fur1 and Fcy1. These data provide a framework for understanding 5FC resistance in C. glabrata and potentially in other fungal pathogens

    Azole Resistance in Candida glabrata: Coordinate Upregulation of Multidrug Transporters and Evidence for a Pdr1-Like Transcription Factor

    No full text
    Candida glabrata has emerged as a common cause of fungal infection. This yeast has intrinsically low susceptibility to azole antifungals such as fluconazole, and mutation to frank azole resistance during treatment has been documented. Potential resistance mechanisms include changes in expression or sequence of ERG11 encoding the azole target. Alternatively, resistance could result from upregulated expression of multidrug transporter genes; in C. glabrata these include CDR1 and PDH1. By RNA hybridization, 10 of 12 azole-resistant clinical isolates showed 6- to 15-fold upregulation of CDR1 compared to susceptible strains. In 4 of these 10 isolates PDH1 was similarly upregulated, and in the remainder it was upregulated three- to fivefold, while ERG11 expression was minimally changed. Laboratory mutants were selected on fluconazole-containing medium with glycerol as carbon source (to eliminate mitochondrial mutants). Similar to the clinical isolates, six of seven laboratory mutants showed unchanged ERG11 expression but coordinate CDR1-PDH1 upregulation ranging from 2- to 20-fold. Effects of antifungal treatment on gene expression in susceptible C. glabrata strains were also studied: azole exposure induced CDR1-PDH1 expression 4- to 12-fold. These findings suggest that these transporter genes are regulated by a common mechanism. In support of this, a mutation associated with laboratory resistance was identified in the C. glabrata homolog of PDR1 which encodes a regulator of multidrug transporter genes in Saccharomyces cerevisiae. The mutation falls within a putative activation domain and was associated with PDR1 autoupregulation. Additional regulatory factors remain to be identified, as indicated by the lack of PDR1 mutation in a clinical isolate with coordinately upregulated CDR1-PDH1

    Unusual ribosomal RNA of the intestinal parasite Giardia lamblia

    No full text

    Histone Deacetylase Inhibitors Enhance Candida albicans Sensitivity to Azoles and Related Antifungals: Correlation with Reduction in CDR and ERG Upregulation

    No full text
    Histone acetylation and deacetylation play important roles in eukaryotic gene regulation. Several histone deacetylase (HDA) inhibitors have been characterized, including trichostatin A (TSA), apicidin, and sodium butyrate. We tested their effects on Candida albicans in vitro growth, heat sensitivity, and germ tube formation; minimal effects were observed. However, there was a dramatic effect of TSA on C. albicans sensitivity to the azoles fluconazole, itraconazole, and miconazole. Similar effects were observed with other HDA inhibitors and with the antifungals terbinafine and fenpropimorph, which target, as do azoles, enzymes in the ergosterol biosynthetic pathway. In contrast, HDA inhibitors had minimal effect on the activities of amphotericin B, flucytosine, and echinocandin, which have unrelated targets. Specifically, addition of 3 Ī¼g of TSA/ml lowered the itraconazole MIC for five susceptible C. albicans isolates an average of 2.7-fold at 24 h, but this increased to >200-fold at 48 h. Thus, the primary effect of TSA was a reduction in azole trailing. TSA also enhanced itraconazole activity against Candida parapsilosis and Candida tropicalis but had no effect with four less related yeast species. To examine the molecular basis for these effects, we studied expression of ERG genes (encoding azole and terbinafine targets) and CDR/MDR1 genes (encoding multidrug transporters) in C. albicans cells treated with fluconazole or terbinafine with or without TSA. Both antifungals induced to various levels the expression of ERG1, ERG11, CDR1, and CDR2; addition of TSA reduced this upregulation 50 to 100%. This most likely explains the inhibition of azole and terbinafine trailing by TSA and, more generally, provides evidence that trailing is mediated by upregulation of target enzymes and multidrug transporters

    ROX1 and ERG Regulation in Saccharomyces cerevisiae: Implications for Antifungal Susceptibility

    No full text
    Yeasts respond to treatment with azoles and other sterol biosynthesis inhibitors by upregulating the expression of the ERG genes responsible for ergosterol production. Previous studies on Saccharomyces cerevisiae implicated the ROX1 repressor in ERG regulation. We report that ROX1 deletion resulted in 2.5- to 16-fold-lower susceptibilities to azoles and terbinafine. In untreated cultures, ERG11 was maximally expressed in mid-log phase and expression decreased in late log phase, while the inverse was observed for ROX1. In azole-treated cultures, ERG11 upregulation was preceded by a decrease in ROX1 RNA. These inverse correlations suggest that transcriptional regulation of ROX1 is an important determinant of ERG expression and hence of azole and terbinafine susceptibilities

    New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Speciesā–æ

    No full text
    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of Ī²-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two ā€œhot spotā€ regions of Fks1 or Fks2, the probable Ī²-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Ī” background) exhibited ā‰„16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new ā€œhot spot 3ā€ in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES
    corecore