93 research outputs found

    Spatial and temporal expression profiling of cell-wall invertase genes during early development in hybrid poplar

    Get PDF
    Cell-wall invertase genes are spatially and temporally regulated in several plant species, including Daucus carota L., Lycopersicon esculentum L. and Solanum tuberosum L. However, few studies of cell-wall invertase genes of trees have been conducted, despite the importance of trees as a source of lignocellulosic biopolymers.We identified three putative cell-wall invertase genes in hybrid poplar (Populus alba L. × grandidentata Michx.) that showed higher homology to each other than to cell-wall invertases of other dicotyledonous species, with two of the genes (Pa×gINV2 and Pa×gINV3) appearing as a genomic tandem repeat. These genes are more similar to each other than to tandemly repeated cell-wall invertases of other plants, perhaps indicating parallel evolution of a duplication event with cell-wall invertases in dicotyledons. Spatial and temporal expression analyses throughout a complete annual cycle indicated that Pa×gINV1 and Pa×gINV2 are highly regulated in vegetative tissues during three distinct growth phases: early growth, dormancy and post-dormancy. Expression of the third gene (Pa×gINV3) appears to be tightly regulated and may represent a floral-specific cell-wall invertase. Of the two genes expressed in vegetative tissues, Pa×gINV1 appears to be exclusively involved in processes related to dormancy, whereas Pa×gINV2 appears to encode an enzyme involved in phloem unloading and in providing actively growing tissues, such as developing xylem, with the energy and carbon skeletons necessary for respiration and cell wall biosynthesis

    Quantitative Analysis of Lignocellulosic Components of Non-Treated and Steam Exploded Barley, Canola, Oat and Wheat Straw Using Fourier Transform Infrared Spectroscopy

    Get PDF
    Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. Fourier Transformed Infrared (FTIR) spectroscopy was considered as an option to achieve this objective. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively

    Quantitative Analysis of Lignocellulosic Components of Non-Treated and Steam Exploded Barley, Canola, Oat and Wheat Straw Using Fourier Transform Infrared Spectroscopy

    Get PDF
    Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. Fourier Transformed Infrared (FTIR) spectroscopy was considered as an option to achieve this objective. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively

    Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation

    Get PDF
    The effects of the over-expression of the Acetobacter xylinum UDP-glucose pyrophosphorylase (UGPase) under the control of the tandem repeat Cauliflower Mosaic Virus promoter (2335S) on plant metabolism and growth were investigated in hybrid poplar (Populus alba3grandidentata). Transcript levels, enzyme activity, growth parameters, leaf morphology, structural and soluble carbohydrates, and soluble metabolite levels were quantified in both transgenic and wild-type trees. Transgenic 2335S::UGPase poplar showed impaired growth rates, displaying reduced height growth and stem diameter. Morphologically, 2335S::UGPase trees had elongated axial shoots, and leaves that were substantially smaller in size when compared with wild-type trees at equivalent developmental stages. Biochemical analysis revealed significant increases in soluble sugar, starch, and cellulose contents, and concurrent decreases in lignin content. Lignin monomer composition was altered in favour of syringyl moieties. Detailed soluble metabolite analysis revealed that 2335S::UGPase trees had as much as a 270-fold increase in the salicylic acid 2-O-b-Dglucoside (SAG), a compound typically associated with the stress response. These data suggest that while it is possible to alter the allocation of carbon in favour of cellulose biosynthesis, whole plant changes result in unexpected decreases in growth and an increase in defence metabolites

    Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation

    Get PDF
    The effects of the over-expression of the Acetobacter xylinum UDP-glucose pyrophosphorylase (UGPase) under the control of the tandem repeat Cauliflower Mosaic Virus promoter (2335S) on plant metabolism and growth were investigated in hybrid poplar (Populus alba3grandidentata). Transcript levels, enzyme activity, growth parameters, leaf morphology, structural and soluble carbohydrates, and soluble metabolite levels were quantified in both transgenic and wild-type trees. Transgenic 2335S::UGPase poplar showed impaired growth rates, displaying reduced height growth and stem diameter. Morphologically, 2335S::UGPase trees had elongated axial shoots, and leaves that were substantially smaller in size when compared with wild-type trees at equivalent developmental stages. Biochemical analysis revealed significant increases in soluble sugar, starch, and cellulose contents, and concurrent decreases in lignin content. Lignin monomer composition was altered in favour of syringyl moieties. Detailed soluble metabolite analysis revealed that 2335S::UGPase trees had as much as a 270-fold increase in the salicylic acid 2-O-b-Dglucoside (SAG), a compound typically associated with the stress response. These data suggest that while it is possible to alter the allocation of carbon in favour of cellulose biosynthesis, whole plant changes result in unexpected decreases in growth and an increase in defence metabolites

    Sucrose phosphate synthase expression influences poplar phenology

    Get PDF
    The objective of this study was to manipulate the intracellular pools of sucrose, and investigate its role in regulating plant growth, phenology (leaf senescence and bud break) and fibre development. This objective was achieved by differentially expressing an Arabidopsis (Arabidopsis thaliana L. Heynh.) sucrose phosphate synthase (SPS) gene in hybrid poplar (Populus alba · Populus grandidentata Michx.), a model system for tree biology with substantial industrial relevance in the context of short rotation forestry and a target bioenergy crop. Phenotypic differences were evident in the transgenic trees, as both the timing of bud flush and leaf senescence were altered compared to wild-type (WT) trees. Tree height and stem diameter were similar in WT and in the AtSPS transgenic trees, however, there were differences in the length of xylem fibres. Elevated concentrations of intracellular sucrose in both leaf and stem tissue of the transgenic trees are associated with a prolonged onset of senescence and an advancement in bud flush in the following spring. The association among sucrose content, tree phenology and elevated SPS gene expression implicates both enzyme and product in regulating poplar developmental processes

    Wood traits explain microbial but not termite‐driven decay in Australian tropical rainforest and savanna

    Get PDF
    1. Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation. 2. To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non-native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers. 3. Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna. 4. We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite-driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities. 5. Synthesis. Ecosystem-scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite-driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world-wide
    corecore