41 research outputs found
Identification of the growth factor-binding sequence in the extracellular matrix protein MAGP-1
Editorial
Análisis de casos
Reforma agraria y lucha por la tierra en América Latina
La Reforma Agraria en América Latina: una revolución frustrada
Plinio Arruda Sampaio
A Nova Questão Agrária e a Reinvenção do Campesinato: o caso do MST
Carlos Walter Porto-Gonçalves
El movimiento campesino en el Paraguay: conflictos, planteamientos y desafÃos
Tomás Palau Viladesau
Movimientos campesinos e indÃgenas en México: la lucha por la tierra
Luciano Concheiro Bórquez y Sergio Grajales Ventura
Las luchas campesinas en Colombia en los albores del siglo XXI: de la frustración a la esperanza
IsaÃas Tobasura Acuña
Documentos
O que precisa ser feito para mudar a vida do povo!
Comunicado del Frente Nacional Campesino
Ezequiel Zamora de Venezuela
CronologÃa del conflicto
La geografÃa polÃtica
del conflicto social en América Latina
José Seoane y Clara Algranati
Región Sur
Los sindicatos uruguayos ante el primer gobierno de izquierda
Luis Senatore y Jaime Yaffé
• Argentina
• Brasil
• Chile
• Paraguay
• Uruguay
Región Andina
Quito en abril: los forajidos derrotan al coronel
Mario Unda
• Bolivia
• Colombia
• Ecuador
• Perú
• Venezuela
Región Norte
La Guatemala de la resistencia y de la esperanza: las jornadas de lucha contra el CAFTA
Simona Violetta Yagenova
• Costa Rica
• El Salvador
• Guatemala
• Honduras
• México
• Nicaragua
• Panamá
• Puerto Rico
• República Dominicana
Debates
Territorio y movimientos sociales
O retorno do território Apresentação por Maria Adélia Aparecida de Souza
Milton Santos
Outros territórios, outros mapas
Ana Clara Torres Ribeiro
Movimentos socioterritoriais e movimentos socioespaciais
Bernardo Mançano Fernandes
Territorios en disputa: iniciativas productivas y acción polÃtica en Mosconi, Argentina
Norma Giarracca y Juan Wahren
Sarjam [Vocablo en lengua aymara que significa ándate]
Jorge A. Sainz Cardon
Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4\u27s suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissuespecific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly. 2017 © The Authors, some rights reserved
Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries.
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4\u27s suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissuespecific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly. 2017 © The Authors, some rights reserved
Intracellular retention of mutant lysyl oxidase leads to aortic dilation in response to increased hemodynamic stress
Heterozygous missense mutations in lysyl oxidase (LOX) are associated with thoracic aortic aneurysms and dissections. To assess how LOX mutations modify protein function and lead to aortic disease, we studied the factors that influence the onset and progression of vascular aneurysms in mice bearing a Lox mutation (p.M292R) linked to aortic dilation in humans. We show that mice heterozygous for the M292R mutation did not develop aneurysmal disease unless challenged with increased hemodynamic stress. Vessel dilation was confined to the ascending aorta although both the ascending and descending aortae showed changes in vessel wall structure, smooth muscle cell number and inflammatory cell recruitment that differed between wild-type and mutant animals. Studies with isolated cells found that M292R-mutant Lox is retained in the endoplasmic reticulum and ultimately cleared through an autophagy/proteasome pathway. Because the mutant protein does not transit to the Golgi where copper incorporation occurs, the protein is never catalytically active. These studies show that the M292R mutation results in LOX loss-of-function due to a secretion defect that predisposes the ascending aorta in mice (and by extension humans with similar mutations) to arterial dilation when exposed to risk factors that impart stress to the arterial wall
Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4(−/−) mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4(−/−) embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4(−/−) mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4(−/−) tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4(−/−) mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis
Deletion of type VIII collagen reduces blood pressure, increases carotid artery functional distensibility and promotes elastin deposition
Arterial stiffening is a significant predictor of cardiovascular disease development and mortality. In elastic arteries, stiffening refers to the loss and fragmentation of elastic fibers, with a progressive increase in collagen fibers. Type VIII collagen (Col-8) is highly expressed developmentally, and then once again dramatically upregulated in aged and diseased vessels characterized by arterial stiffening. Yet its biophysical impact on the vessel wall remains unknown. The purpose of this study was to test the hypothesis that Col-8 functions as a matrix scaffold to maintain vessel integrity during extracellular matrix (ECM) development. These changes are predicted to persist into the adult vasculature, and we have tested this in our investigation. Through ou