238 research outputs found

    Four Swedish long-term field experiments with sewage sludge reveal a limited effect on soil microbes and on metal uptake by crops

    Get PDF
    Purpose: This study aims to study the effect of sewage sludge amendment on crop yield and on microbial biomass and community structure in Swedish agricultural soils. Materials and methods Topsoil samples (0-0.20 m depth) from four sites where sewage sludge had been repeatedly applied during 14-53 years were analysed for total C, total N, pH and phospholipid fatty acids (PLFAs). Heavy metals were analysed in both soil and plant samples, and crop yields were recorded. Results and discussion At all four sites, sewage sludge application increased crop yield and soil organic carbon. Sludge addition also resulted in elevated concentrations of some heavy metals (mainly Cu and Zn) in soils, but high concentrations of metals (Ni and Zn) in plant materials were almost exclusively found in the oldest experiment, started in 1956. PLFA analysis showed that themicrobial community structure was strongly affected by changes in soil pH. At those sites where sewage sludge had caused low pH, Gram-positive bacteria were more abundant. However, differences in community structure were larger between sites than between the treatments. Conclusions: At all four sites, long-term sewage sludge application increased the soil organic carbon and nitrogen content, microbial biomass and crop yield. Long-term sewage sludge application led to a decrease in soil pH. Concentrations of some metals had increased significantly with sewage sludge application at all sites, but the amounts of metals added to soil with sewage sludge were found not to be toxic for microbes at any site

    Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    Get PDF
    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure

    Predicting grain protein concentration in winter wheat (Triticum aestivum L.) based on unpiloted aerial vehicle multispectral optical remote sensing

    Get PDF
    Prediction models for crude protein concentration (CP) in winter wheat (Triticum aestivum L.) based on multispectral reflectance data from field trials in 2019 and 2020 in southern Sweden were developed and evaluated for independent trial sites. Reflectance data were collected using an unpiloted aerial vehicle (UAV)-borne camera with nine spectral bands having similar specification to nine bands of Sentinel-2 satellite data. Models were tested for application on near-real time Sentinel-2 imagery, on the prospect that CP prediction models can be made available in satellite-based decision support systems (DSS) for precision agriculture. Two different prediction methods were tested: linear regression and multivariate adaptive regression splines (MARS). Linear regression based on the best-performing vegetation index (the chlorophyll index) was found to be approximately as accurate as the best performing MARS model with multiple predictor variables in leave-one-trial-out cross-validation (R-2 = 0.71, R-2 = 0.70 and mean absolute error 0.64%, 0.60% CP respectively). Models applied on satellite data explained to a small degree between-field variations in CP (R-2 = 0.36), however did not reproduce within-field variation accurately. The results of the different methods presented here show the differences between methods used and their potential for application in a DSS

    Net primary productivity and below-ground crop residue inputs for root crops: Potato (Solanum tuberosum L.) and sugar beet (Beta vulgaris L.)

    Get PDF
    Root crops are significant in agro-ecosystems of temperate climates. However, the amounts of crop residues for these crop types are not well documented and they need to be accounted for in the modeling of soil organic carbon dynamics. Our objective was to review field measurements of root biomass left in the soil as crop residues at harvest for potato and sugar beet. We considered estimates for crop residue inputs as root biomass presented in the literature and some unpublished results. Our analysis showed that compared to, for example, cereals, the contribution of below-ground net primary productivity (NPP) to crop residues is at least two to three times lower for root crops. Indeed, the field measurements indicated that root biomass for topsoils only represents on average 25 to 30 g dry matter (DM) m(-2) yr(-1). Other estimates, albeit variable and region-specific, tended to be higher. We suggest relative plant DM allocation coefficients for agronomic yield (R-P), above-ground biomass (R-S) and root biomass (R-R) components, expressed as a proportion of total NPP. These coefficients, representative for temperate climates (0.739:0.236:0.025 for potato and 0.626:0.357:0.017 for sugar beet), should be useful in the modeling of agro-ecosystems that include root crops

    Highly efficient incorporation of the fluorescent nucleotide analogs tC and tCO by Klenow fragment

    Get PDF
    Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase–DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA–protein interaction than do tethered fluorophores. Here we report the incorporation of the 5′-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tCO), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication

    Common Mode Characterization and Channel Model Verification for Shielded Twisted Pair (STP) Cable

    Get PDF
    This paper investigates common-mode propagation in shielded twisted pair cables. The common mode exhibits great potential for improving the throughput in emerging wireline systems. The design of corresponding transmission schemes over multipair copper cables requires accurate knowledge of the channel properties. We present measurement and modeling results and investigate the feasibility of using standard differentialmode models for data fitting in multiconductor transmission-line modelling of common-mode paths

    Odlingssystemens effekter på kolinlagring i jordbruksmark

    Get PDF
    Kolhalten ökar i svenska mineraljordar främst p.g.a. ökande areal med vall, men det sker stora förluster av kol från mulljordarna. Kolinlagring gynnas främst av perenna växter med stort rotsystem. Grön mark året om är nyckeln. På rena växtodlingsgårdar kan kolhalten höjas genom ökad produktivitet och mellangrödor

    From agricultural use of sewage sludge to nutrient extraction: A soil science outlook

    Get PDF
    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metalcontaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future

    Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter

    Get PDF
    In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated
    corecore