63 research outputs found

    A multiscale model of the effect of Ir thickness on the static and dynamic properties of Fe/Ir/Fe films

    Get PDF
    The complex magnetic properties of Fe/Ir/Fe sandwiches are studied using a hierarchical multi-scale model. The approach uses first principles calculations and thermodynamic models to reveal the equilibrium spinwave, magnetization and dynamic demagnetisation properties. Finite temperature calculations show a complex spinwave dispersion and an initially counter-intuitive, increasing exchange stiffness with temperature (a key quantity for device applications) due to the effects of frustration at the interface, which then decreases due to magnon softening. Finally, the demagnetisation process in these structures is shown to be much slower at the interface as compared with the bulk, a key insight to interpret ultrafast laser-induced demagnetization processes in layered or interface materials

    Ultrafast thermally induced magnetic switching in synthetic ferrimagnets

    Get PDF
    Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we report on atomistic spin simulations of the laser-induced magnetization dynamics on such synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high density magnetic storage element without the need of a write field

    Atomistic study on the pressure dependence of the melting point of NdFe12

    Get PDF
    We investigated, using molecular dynamics, how pressure affects the melting point of the recently theorised and epitaxially grown structure NdFe12. We modified Morse potentials using experimental constants and a genetic algorithm code, before running two-phase solid-liquid coexistence simulations of NdFe12 at various temperatures and pressures. The refitting of the Morse potentials allowed us to significantly improve the accuracy in predicting the melting temperature of the constituent elements

    Effects of interactions on the relaxation processes in magnetic nanostructures

    Get PDF
    Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations

    Timescales and contribution of heating and helicity effect in helicity-dependent all-optical switching

    Get PDF
    The heating and helicity effects induced by circularly polarized laser excitation are entangled in the helicity-dependent all-optical switching (HD-AOS), which hinders understanding the magnetization dynamics involved. Here, applying a dual-pump laser excitation, first with a linearly polarized (LP) laser pulse followed by a circularly polarized (CP) laser pulse, the timescales and contribution from heating and helicity effects in HD-AOS were identified with a Pt/Co/Pt triple-layer. When the LP laser pulses preheat the sample to a nearly fully demag-netized state, the CP laser pulses with a power reduced by 80% switch the sample's magnetization. By varying the time delay between the two pump pulses, the results show that the helicity effect, which gives rise to the deterministic helicity-induced switching, arises almost instantly within 200 fs close to the pulse width upon laser excitation. The results reveal that the transient magnetization state upon which CP laser pulses impinge is the key factor for achieving HD-AOS, and importantly, the tunability between heating and helicity effects with the unique dual-pump laser excitation approach will enable HD-AOS in a wide range of magnetic material systems having wide-ranging implications for potential ultrafast spintronics applications

    Ultrafast and Distinct Spin Dynamics in Magnetic Alloys

    Get PDF
    Controlling magnetic order on ultrashort timescales is crucial for engineering the next-generation magnetic devices that combine ultrafast data processing with ultrahigh-density data storage. An appealing scenario in this context is the use of femtosecond (fs) laser pulses as an ultrafast, external stimulus to fully set the orientation and the magnetization magnitude of a spin ensemble. Achieving such control on ultrashort timescales, e.g., comparable to the excitation event itself, remains however a challenge due to the lack of understanding the dynamical behavior of the key parameters governing magnetism: The elemental magnetic moments and the exchange interaction. Here, we investigate the fs laser-induced spin dynamics in a variety of multi-component alloys and reveal a dissimilar dynamics of the constituent magnetic moments on ultrashort timescales. Moreover, we show that such distinct dynamics is a general phenomenon that can be exploited to engineer new magnetic media with tailor-made, optimized dynamic properties. Using phenomenological considerations, atomistic modeling and time-resolved X-ray magnetic circular dichroism (XMCD), we demonstrate demagnetization of the constituent sub-lattices on significantly different timescales that depend on their magnetic moments and the sign of the exchange interaction. These results can be used as a “recipe” for manipulation and control of magnetization dynamics in a large class of magnetic materials

    Giant Faraday rotation in single- and multilayer graphene

    Full text link
    Optical Faraday rotation is one of the most direct and practically important manifestations of magnetically broken time-reversal symmetry. The rotation angle is proportional to the distance traveled by the light, and up to now sizeable effects were observed only in macroscopically thick samples and in two-dimensional electron gases with effective thicknesses of several nanometers. Here we demonstrate that a single atomic layer of carbon - graphene - turns the polarization by several degrees in modest magnetic fields. The rotation is found to be strongly enhanced by resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices

    Metastatic breast carcinoma mimicking a sebaceous gland neoplasm: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Breast cancer is common in women and its metastases involve the skin in approximately one quarter of patients. Accordingly, metastatic breast cancer shown to be cutaneous through histology must be distinguished from a wide variety of other neoplasms as well as the diverse morphologic variants of breast cancer itself.</p> <p>Case presentation</p> <p>We report the case of a 61-year-old Caucasian woman with cutaneous metastases of a bilateral ductal breast carcinoma that in histopathological examination mimicked an adnexal neoplasm with sebaceous differentiation.</p> <p>Conclusion</p> <p>Against the background of metastatic breast carcinoma, dermatopathological considerations of sebaceous differentiation of skin lesions are presented and discussed focusing on the rare differential diagnosis of sebaceous carcinoma of the breast.</p

    Timescales and contribution of heating and helicity effect in helicity-dependent all-optical switching

    Get PDF
    The heating and helicity effects induced by circularly polarized laser excitation are entangled in the helicity-dependent all-optical switching (HD-AOS), which hinders understanding the magnetization dynamics involved. Here, applying a dual-pump laser excitation, first with a linearly polarized (LP) laser pulse followed by a circularly polarized (CP) laser pulse, the timescales and contribution from heating and helicity effects in HD-AOS were identified with a Pt/Co/Pt triple-layer. When the LP laser pulses preheat the sample to a nearly fully demagnetized state, the CP laser pulses with a power reduced by 80% switch the sample’s magnetization. By varying the time delay between the two pump pulses, the results show that the helicity effect, which gives rise to the deterministic helicity-induced switching, arises almost instantly within 200 fs close to the pulse width upon laser excitation. The results reveal that the transient magnetization state upon which CP laser pulses impinge is the key factor for achieving HD-AOS, and importantly, the tunability between heating and helicity effects with the unique dual-pump laser excitation approach will enable HD-AOS in a wide range of magnetic material systems having wide-ranging implications for potential ultrafast spintronics applications. Graphical abstract: [Figure not available: see fulltext.]
    corecore