15 research outputs found

    Community-level respiration of prokaryotic microbes may rise with global warming

    Get PDF
    Understanding how the metabolic rates of prokaryotes respond to temperature is fun-damental to our understanding of how ecosystem functioning will be altered by climatechange, as these micro-organisms are major contributors to global carbon efflux. Ecologicalmetabolic theory suggests that species living at higher temperatures evolve higher growthrates than those in cooler niches due to thermodynamic constraints. Here, using a globalprokaryotic dataset, we find that maximal growth rate at thermal optimum increases withtemperature for mesophiles (temperature optima.45â—¦C), but not thermophiles (&45â—¦C).Furthermore, short-term (within-day) thermal responses of prokaryotic metabolic rates aretypically more sensitive to warming than those of eukaryotes. Because climatic warmingwill mostly impact ecosystems in the mesophilic temperature range, we conclude that asmicrobial communities adapt to higher temperatures, their metabolic rates and therefore,biomass-specific CO2production, will inevitably rise. Using a mathematical model, weillustrate the potential global impacts of these findings

    A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction?

    Get PDF
    Addiction to a wide range of substances of abuse has been suggested to reflect a ‘Reward Deficiency Syndrome'. That is, drugs are said to stimulate the reward mechanisms so intensely that, to compensate, the population of dopamine D(2) receptors (DD2R) declines. The result is that an increased intake is necessary to experience the same degree of reward. Without an additional intake, cravings and withdrawal symptoms result. A suggestion is that food addiction, in a similar manner to drugs of abuse, decrease DD2R. The role of DD2R in obesity was therefore examined by examining the association between body mass index (BMI) and the Taq1A polymorphism, as the A1 allele is associated with a 30–40% lower number of DD2R, and is a risk factor for drug addiction. If a lower density of DD2R is indicative of physical addiction, it was argued that if food addiction occurs, those with the A1 allele should have a higher BMI. A systematic review found 33 studies that compared the BMI of those who did and did not have the A1 allele. A meta-analysis of the studies compared those with (A1/A1 and A1/A2) or without (A2/A2) the A1 allele; no difference in BMI was found (standardized mean difference 0.004 (s.e. 0.021), variance 0.000, Z=0.196, P<0.845). It was concluded that there was no support for a reward deficiency theory of food addiction. In contrast, there are several reports that those with the A1 allele are less able to benefit from an intervention that aimed to reduce weight, possibly a reflection of increased impulsivity

    Vibrationally assisted intersystem crossing in benchmark thermally activated delayed fluorescence molecules

    No full text
    Electrically injected charge carriers in organic light-emitting devices (OLEDs) undergo recombination events to form singlet and triplet states in a 1:3 ratio, representing a fundamental hurdle for achieving high quantum efficiency. Dopants based on thermally activated delayed fluorescence (TADF) have emerged as promising candidates for addressing the spin statistics issue in OLEDs. In these materials, reverse singlet–triplet intersystem crossing (rISC) becomes efficient, thereby activating luminescence pathways for weakly emissive triplet states. However, despite a growing consensus that torsional vibrations facilitate spin–orbit-coupling- (SOC-) driven ISC in these molecules, there is a shortage of experimental evidence. We use transient electron spin resonance and theory to show unambiguously that SOC interactions drive spin conversion and that ISC is a dynamic process gated by conformational fluctuations for benchmark carbazolyl–dicyanobenzene TADF emitters

    Towards a molecular understanding of shape selectivity

    No full text
    Shape selectivity is a simple concept: the transformation of reactants into products depends on how the processed molecules fit the active site of the catalyst. Nature makes abundant use of this concept, in that enzymes usually process only very few molecules, which fit their active sites. Industry has also exploited shape selectivity in zeolite catalysis for almost 50 years, yet our mechanistic understanding remains rather limited. Here we review shape selectivity in zeolite catalysis, and argue that a simple thermodynamic analysis of the molecules adsorbed inside the zeolite pores can explain which products form and guide the identification of zeolite structures that are particularly suitable for desired catalytic applications

    Cenozoic environmenal shifts and foraminiferal evolution

    No full text
    The dense record of Cenozoic foraminifera simultaneously supplies a mosaic of biostratigraphy, a rich field for evolutionary studies and the vehicles for geochemical environmental proxies. Four groups are discussed: the larger foraminifera on the warm-water shelves and platforms, the planktonics, the deep-sea faunas and the southern-extratropical benthics. The environmental trajectory from greenhouse in the later Cretaceous and earlier Paleogene to icehouse in the Neogene is not smooth but punctuated, and there are two particularly critical intervals, later Eocene and early-middle Miocene. The foraminiferal record is not smooth but chunky at 107 years’ scale. There are several good examples of two powerful synchroneities, one being between the faunas of the different realms and the other between the fossil record and the physical-environmental record.Brian McGowra

    Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect

    No full text
    SA was funded by the Fyssen Foundation. CJP was funded by a Marie Curie Postdoctoral Fellowship. XZ was funded by the Staff Development Programme of the Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences. OJL was funded by the Jenny and Antti Wihuri Foundation. LC was funded by an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore